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ABSTRACT
We offer the first large-scale analysis of Web traffic based
on network flow data. Using data collected on the Inter-
net2 network, we constructed a weighted bipartite client-
server host graph containing more than 18 × 106 vertices
and 68 × 106 edges valued by relative traffic flows. When
considered as a traffic map of the World-Wide Web, the gen-
erated graph provides valuable information on the statisti-
cal patterns that characterize the global information flow
on the Web. Statistical analysis shows that client-server
connections and traffic flows exhibit heavy-tailed probabil-
ity distributions lacking any typical scale. In particular, the
absence of an intrinsic average in some of the distributions
implies the absence of a prototypical scale appropriate for
server design, Web-centric network design, or traffic mod-
eling. The inspection of the amount of traffic handled by
clients and servers and their number of connections high-
lights non-trivial correlations between information flow and
patterns of connectivity as well as the presence of anomalous
statistical patterns related to the behavior of users on the
Web. The results presented here may impact considerably
the modeling, scalability analysis, and behavioral study of
Web applications.
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Architecture and Design—Network topology ; C.2.2 [Com-
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1. INTRODUCTION
In recent years the research community has devoted a

large effort to the understanding and characterization of
the World-Wide Web, in the attempt to provide a theoret-
ical and practical understanding of what has been termed
the ecology of information [11]. A fundamental step in this
direction is represented by experiments aimed at studying
the graph structure of the Web, in which vertices and di-
rected edges identify Web pages and hyperlinks, respectively.
These studies are based on crawlers that explore the connec-
tivity of the Web by following the links on each discovered
page, thus reconstructing the topological properties of the
visited graph. In particular, data gathered in large-scale
crawls [3, 7, 14, 1, 15] have indicated the presence of a rich
and complex architecture underlying the structure of the
Web graph.

Foremost among these properties have been the in-degree
and out-degree distributions of the network, where in-degree
represents the number of Web pages that link to a particular
page, and out-degree represents the number of links that a
page contains to other pages. These distributions turn out
to have heavy tails, showing close fits to power-law distribu-
tions over several orders of magnitude. This last feature is
the signature of complex topological properties with statis-
tical fluctuations that extend over many length scales; they
are not exclusive to the Web and can be found in a wide
range of network structures spanning various domains such
as ecology, biology, and social and technological systems [2,
4, 9, 17].

While there is much to be learned from the link structure
of the Web—it forms the basis of Brin and Page’s PageRank
algorithm [6]—it does not tell us about what people actu-
ally do when browsing the Web. Indeed, it has been recog-
nized that the complexity of the Web encompasses not only
its topology but also the dynamics of information. Exam-
ples of this complexity are navigation patterns, community
structures, congestion, and other social phenomena resulting
from users’ behavior [12, 13, 1, 17]. In order to gain this kind
of insight, a variety of usage data must be studied, such as
server logs, hit counts, and router statistics. These sources
of information tell us about the behavioral network of the
World-Wide Web, in which the nodes correspond to individ-
ual hosts on the Internet and the edges correspond to actual
HTTP transfers among these hosts. Network managers and
capacity planners are accustomed to this view of the Web;



numerous tools exist for analyzing server logs, determining
trends in the quantity of HTTP traffic on a network, and so
forth. These tools offer high-level insight into such aspects
of user behavior as what pages are most popular, what re-
ferring sites are most common, what percentage of traffic in
a local network is devoted to Web traffic, etc.

The aforementioned studies, however, do not consider the
statistical properties of the Web from the perspective of an
international transit network that serves as a conduit rather
than an endpoint for Web traffic. Such a study amounts
to a global large-scale investigation of the behavioral net-
work itself and represents the focus of the present work. In
particular, we discuss the properties of a very large sample
of Web-related network flow data taken from the Internet2
(Abilene) network. The data collected allow us to construct
a client-server interaction network whose weighted connec-
tions characterize the traffic flows. To our knowledge, this
is the first large-scale weighted graph representation of the
Web interaction network and its traffic. A valued bipar-
tite graph is used to represent the network mathematically,
and a thorough analysis is performed to uncover the sta-
tistical laws characterizing the patterns of traffic. We find
that client-server interaction patterns show marked scale-
free properties, with statistical distributions of traffic prop-
erties varying over a wide range of length scales. In some
cases, scaling over eight orders of magnitude is observed in
conjunction with a surprisingly slow decay of the distribu-
tion tails, indicating the presence of unbounded fluctuations
in all measures characterizing the behavior of Web traffic.
These fluctuations in traffic and connectivity patterns sug-
gest several questions related to the planning and modeling
of Web traffic. Finally, we provide evidence that large-scale
analysis of traffic might result in a useful tool for the sta-
tistical detection of anomalous patterns related to malicious
and exploratory use of the Web.

2. COLLECTION OF FLOW DATA
In order to gather data on the global Web traffic we per-

formed a set of passive measurements on the Abilene (In-
ternet2) network. The Abilene network is an TCP/IP data
network that provides high-speed Internet connectivity to
research laboratories, colleges, and universities throughout
the United States.1 The backbone of the network consists of
10-Gbps fiberoptic links connecting eleven high-performance
routers located in major metropolitan areas such as Los An-
geles, Chicago, and New York City. Individual institutions
connect to Abilene either directly or through large regional
connectors. Abilene carries only academic and research traf-
fic; participants must maintain their own separate connec-
tions to the commodity Internet. As of this writing, over
200 universities and corporate research laboratories within
the United States connect to the Abilene network. In addi-
tion, Abilene also provides transit for data from dozens of
international academic and research networks, particularly
between Pacific Rim nations and Europe. The traffic thus
includes not only data to and from hosts on Abilene, but
also international data routed across Abilene. While the
network provides native support for newer protocols such as
IPv6, the great majority of all hosts on the Abilene network
use IPv4, just as in the commodity Internet.

Several properties of the Abilene network make it an ideal

1http://abilene.internet2.edu/

Figure 1: Typical activity levels between core
routers in the Abilene network. The numbers refer
to sustained data rates measured in bits per second.

environment for studying network traffic. As a wide-area
transit network that includes both domestic and interna-
tional traffic, it offers a global view of the Internet un-
available in many smaller networks. It also has a hetero-
geneous user base that includes hundreds of thousands of
high-spirited undergraduates as well as researchers and col-
lege faculty. Finally, even during peak hours, the Abilene
network is never congested, which offers a view of what users
do when the network itself does not impede their behavior.
Typical traffic levels in the network can be seen in Figure 1.2

Our passive measurement strategy is based on informa-
tion about the traffic handled by the network that comes
in the form of flow records generated by the core routers
and sent over the network to management systems. Each
flow record contains information about a single network flow,
which is defined as one or more packets sent from a partic-
ular source host and port, to a particular destination host
and port, using a particular protocol, over some time inter-
val. In the case of most Web traffic, either the source or
the destination port will be 80, the assigned port number
for HTTP. The routers do not have capacity for generating
full information on every flow in the network; instead, they
must sample the data, which is done periodically at a rate
of approximately one in a hundred packets. Note that even
though TCP connections involve bidirectional traffic, net-
work flows as defined above are only unidirectional. Thus,
every TCP connection potentially generates two flows: one
from the client to the server, and another from the server
to the client. Sampling implies that we may see only one of
these flows, or possibly neither.

The network flow records contain a variety of information,
which is described in detail in Cisco’s documentation on the
“netflow-v5” format.3 The relevant fields for the analysis at
hand are the source and destination IP addresses, the source
and destination ports, and the total number of bytes in the
flow. In conformance with the privacy policies of Internet2,
we do not examine the actual source and destination IP ad-
dresses found in the flow records; instead, they are replaced
with index values that maintain their identity only over the

2http://loadrunner.uits.iu.edu/weathermaps/abilene/
3http://www.cisco.com/univercd/cc/td/doc/product/
rtrmgmt/nfc/nfc 3 0/nfc ug/nfcform.htm



course of a single day. This index is stored only in system
memory and is discarded at the end of the day. The index
values are unique across the entire set of core routers.

Even with the routers sampling one packet in a hundred,
the total amount of flow data collected is substantial. On a
typical weekday, the Abilene routers produce between 700
and 800 million of these flow records, of which around 40
percent involve HTTP (i.e., TCP connections on port 80).
At 48 bytes per flow record, this means that a full day of
flow data consumes about 35 GB of disk space and arrives
at a mean rate of 3.4 Mbps.

The analysis in this paper is based on a full 24-hour day
of network flow data captured and saved to disk starting
at midnight Eastern Standard Time (UTC-5) on September
30, 2004. During this interval, we collected information on
approximately 742 million flows between almost 30 million
individual hosts. Of these flows, about 319 million (43%) in-
volved TCP connections with an endpoint on port 80, which
we take to be indicative of Web traffic.

3. A WEIGHTED GRAPH REPRESENTA-
TION OF WEB TRAFFIC

The data collected have been used to construct a graph
formed by considering hosts involved in Web flows as ver-
tices (nodes) and the directed aggregate traffic between pairs
of hosts as edges. The resulting graph contains 18.5 mil-
lion nodes and 68.1 million edges. This view of the data,
however, makes no distinction between Web servers and
clients. For the sake of consistency in statistical analysis,
it is thus more appropriate to partition the graph into sub-
sets. One subset C = {i1, i2, · · · , iNC} identifies with each
vertex i a host who has acted as client, and the second sub-
set S = {j1, j2, · · · , jNS} consists of hosts that have acted as
servers. The data clearly indicate that a number of hosts act
both as server and clients; these hosts are therefore repre-
sented in both sets. Each flow record contributes a directed
edge representing a server-to-client (j, i) or client-to-server
(i, j) connection, depending on whether the source or desti-
nation uses port 80. To each edge we assign a weight indicat-
ing the aggregate amount of data associated with that pair
of hosts in the network. Each weight wij is the total amount
of sampled data sent from a particular client to a particular
server over the course of the day. Similarly, the weights wji

give the total amount of data sent from a particular server
to a particular client. This graph representation results in a
weighted bipartite digraph, since we have two disjoint sub-
sets C and S such that each directed edge connects only a
vertex from C to one from S, or vice-versa [8]. In Figure 2
we show a pictorial representation of the obtained bipartite
digraph.

From the analysis of this weighted graph we can derive
a number of characteristic quantities and basic statistical
distributions [5, 16]:

• The number of servers nS(i) with which each client
communicates in server-to-client and client-to-server
connections. We measure in like manner the number
of clients nC(j) handled by each server.

• The in-degree kin of a vertex i (j) is the number of
directed edges with i (j) as their terminal vertex. The
in-degree of server vertices is therefore the number of
clients by each server in client-to-server connections.

Figure 2: Bipartite digraph representation of the
client-server traffic flows. To each directed edge is
associated a weight wij or wji representing the total
amount of data sent from one host to the other.

Similarly, the in-degree of client vertices is the number
of servers sending HTTP data to each client.

• The out-degree kout of a vertex i (j) is the number of
directed edges with i (j) as their initial vertex. The
out-degree of server vertices is again an estimate of the
number of clients handled by each server in server-to-
client flows. Similarly, the out-degree of client vertices
is a measure of the number of servers contacted by
each client. It is worth remarking that while kin and
kout may differ on a single vertex, the analysis of the in-
and out-degree in the two subsets S and C provides the
same statistical information concerning the number of
clients per server and servers per client, respectively.

• The client out-strength is defined as

sout(i) =
X

j

wij ,

and represents the total number of bytes sent from
each client i to servers, which will consist largely of
requests and posted form data. Similarly, the client
in-strength

sin(i) =
X

j

wji

is the amount of data that each client receives from
servers (i.e., client downloads).

• The server out-strength is defined as

sout(j) =
X

i

wji,

and represents the total number of bytes sent from
each server j to its clients. The out-strength therefore
amounts to the volume of downloads handled by each
server. Analogously, server in-strength

sin(j) =
X

i

wij

is the amount of incoming data (requests and uploads)
handled by each server.
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Figure 3: Probability distribution for any given
client to contact nS servers. As a visual guide (solid
line) we report the power-law behavior with slope
(exponent) -2.4.

In the following section, we will analyze the statistical
properties of the graph by looking at clients and servers
separately. It is worth remarking, however, that the num-
ber of client-to-server connections and server-to-client con-
nections are not identical. In particular, the server-to-client
connections involve 2.38 million clients, 148,000 servers, and
17,500 vertices that play both roles. Client-to-server connec-
tions are more numerous and involve 18.1 million vertices,
of which 17.7 million are clients, 363,000 are servers, and
29,000 are both.4

4. DATA ANALYSIS
In this section, we discuss our findings for the properties

of the behavioral Web network from two different points of
view: the client and the server. In the client section, we
are concerned with properties that have implications for the
design and modeling of Web browsers, crawlers, and other
user agents. In the server section, we are concerned with
properties that affect the design and modeling of both Web
servers and the networks built to support them.

Unless otherwise noted, our technique for analyzing a dis-
tribution involves grouping the data into logarithmically-
sized histogram bins normalized by the width of the bin and
the size of the distribution so that we are estimating a prob-
ability density function. The results are then plotted on
a log-log scale with the bin centers on the x-axis and the
estimated probability on the y-axis.

4.1 Web Clients

4.1.1 Traffic heterogeneity
The first quantity of interest is the number of servers

contacted by each client. This can be extracted from the
in-degree and out-degree of client vertices in our bipartite
graph. In Figure 3 we report the probability distribution
P (nS) describing the likelihood that any given client con-
tacts nS servers. For our sample, we get a mean of 〈nS〉 =
3.52 servers per client and a standard deviation of σ(nS) =
35.1. Strikingly, the standard deviation that indicates the

4The relatively small number of hosts operating in both
client and server roles suggests that the practice of using
port 80 to mask peer-to-peer applications is uncommon.
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Figure 4: Probability distribution of the total in-
coming data (in-strength) and total outgoing data
(out-strength) of clients. The solid lines illustrate
power-law behavior with slopes of -2.2 and -2.1 for
the upper and lower graphs, respectively.

level of statistical fluctuation is an order of magnitude larger
than the mean value. This is due to the heavy-tailed and
skewed probability distribution that matches a power law
P (nS) ∼ n−γ

S , with exponent γ ' 2.4 ± 0.2, on a range
of values spanning several orders of magnitude. For such
a distribution, the second moment 〈n2

S〉 =
R

n2
SP (nS)dn

eventually diverges; the standard deviation is not an intrin-
sic value of the distribution and is only bounded by the size
of the statistical sample. It is clear that in such a case, the
average value 〈n〉 is no longer a typical value, and we lack
any characteristic length in the system: this is the so-called
“scale-free” behavior. In particular, we have an appreciable
probability of finding clients that handle a disproportionate
number of servers.

As a confirmation of the scale-free behavior of client con-
nections, we studied also the probability distributions
P (kout,c) and P (kin,c) that any given client has out-degree
kout,c and in-degree kin,c, respectively. These two distribu-
tions refer to number of servers that contacted the client or
were contacted by the client. Statistically, it is reasonable
to expect the same scaling behavior as obtained for the dis-
tribution of total number of servers per client. Indeed, this
analysis again recovered power-law behavior with exponents
γin ' γout ' 2.4, in agreement with the scaling of P (nS).

An important measure of client behavior is the total a-
mount of data sent sout,c and received sin,c when interacting
with servers. Indeed, the performance evaluations of client
applications depend on the typical workloads measured. Yet
in this case, we find that the distributions P (sout,c) and
P (sin,c) are extremely broad, with a range of values span-
ning nine orders of magnitude. In Figure 4, we report both
distributions. The heavy-tail behavior is well approximated
by a power-law behavior over three to four orders of magni-
tude where the distribution assume the forms P (sout,c) ∼
s−αout

out,c and P (sin,c) ∼ s−αin
in,c with αin = 2.1 ± 0.1 and

αout = 2.2 ± 0.1. It is worth mentioning that because of
the sampling done on the data flows, the actual traffic val-
ues are sin,c×102 and sout,c×102. This multiplicative factor
affects neither the performed analysis nor the shape of the
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Figure 5: Probability distribution of the client-to-
server connection traffic. The solid line has slope
-2.3.

distribution. For the in-strength we find a mean value of
〈sin,c〉 = 9.28 × 104 and a standard deviation of σ(sin,c) =
2.05× 106. Analogously, we find 〈sout,c〉 = 1.11× 103 and a
standard deviation of σ(sout,c) = 1.44 × 105. In both cases
the standard deviation is two orders of magnitude larger
than the average value, showing the lack of any character-
istic strength value and the massive heterogeneity in the
amount of data handled by client hosts. Also striking is the
evidence for similar behavior in both ingoing and outgoing
traffic, since the nature of the Web as a broadcast medium
led us to expect much greater asymmetry between incoming
and outgoing data.

Finally, we can consider the probability distribution of
the values wij . These weights represent the aggregate flow
between specific client-server pairs and allow us to study
the probability P (wCS) that any given connection carries
traffic wCS . Figure 5 shows that we have also in this case
a heavy-tailed distribution with a best fit to a power-law
distribution P (wCS) ∼ w−δ

CS with δ ≈ 2.4±0.1. Each weight
represents the total amount of data sent from a particular
client to a particular server over the course of a full day.
The variability of the distribution thus provides evidence
for scale-free traffic heterogeneity even at the level of single
connections.

4.1.2 Behavioral patterns
In order to provide more insight on behavioral patterns on

the Web, let us inspect the correlation between the traffic
and the number of connections handled by clients. Intu-
itively, the strength sout,c (sin,c) behaves as an increasing
function of the client out-degree kout,c (kin,c). The power-
law character of the distribution P (sout,c) might be consid-
ered less surprising from this perspective, as it could arise
directly from the power-law behavior of the server-per-client
distribution. However, further inspection of the strength
behavior uncovers the peculiar nature of the traffic distri-
bution. In Figure 6 (top) we report the behavior of the
average in-strength 〈sin,c(kin,c)〉 for clients with in-degree
kin,c. Analogously, in Figure 7 (top) we report the behavior
of 〈sout,c(kout,c)〉. In both cases, we find that the strength is
increasing as a power law of the degree, yielding the relations

〈sin,c(kin,c)〉 ∼ k−βin
in,c

and

〈sout,c(kin,c)〉 ∼ k−βout
out,c .
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Figure 6: Behavior of the incoming traffic (strength)
sin as a function of the number of server-to-client
connections (degree) kin. Top: behavior of the av-
erage in-strength 〈sin(kin)〉 as a function of the in-
degree. The behavior is linear on a double logarith-
mic scale and is well approximated by power-law
behavior with slope βin ' 1.2. Bottom: frequency
of clients with given in-strength for each value of
the in-degree. In this and the following distribu-
tion maps, tones represent frequencies of strength
values, normalized within each degree bin, on a log
scale.

A best linear fit of the obtained curves gives βin = 1.2±0.1
and βout = 1.2±0.1. These two exponents can be considered
as a signature of non-trivial correlation between the number
of connections and the traffic handled by clients. Indeed,
one would expect a linear correlation behavior β = 1. The
super-linear behavior found for clients is therefore a hint of
non-linear mechanisms at work in the growth in the amount
of downloaded and uploaded data associated with each ad-
ditional connection handled by a client. These results may
prove extremely relevant for the design of scalable client ap-
plications.

Interestingly, the exponents βin and βout allow us to re-
late the degree and strength distribution exponents through
a simple scaling argument. For the sake of simplicity, let us
consider all variables as continuous and plug in the scaling
behavior s(k) ∼ kβ in the strength distribution P (s)ds ∼
s−α, where the various subscript indexes are implicitly con-
sidered. We obtain P (k)dk ∼ k−β(α−1)−1dk, which by def-
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Figure 7: Behavior of the outgoing traffic (strength)
sout as a function of the number of client-to-server
connections (degree) kout. Top: behavior of the aver-
age out-strength 〈sout(kout)〉 as a function of the out-
degree. The behavior is linear on a double logarith-
mic scale and is well approximated by a power-law
behavior with slope βout ' 1.2. Bottom: frequency
of clients with given out-strength for each value of
the out-degree.

inition has to match the behavior P (k)dk ∼ k−γdk. The
comparison of the two scaling behaviors readily provides an
equality among exponents that in our case yields two rela-
tions:

βout =
γout − 1

αout − 1
and βin =

γin − 1

αin − 1
, (1)

obtained by considering the out and in distributions, re-
spectively. The values obtained empirically for the expo-
nents satisfy the above scaling relations within the error bars
for the data, and support a consistent scale-free picture for
properties of client behavior.

While the study of traffic as a function of the number of
connections (〈sin,c(kin,c)〉 and 〈sout,c(kout,c)〉) provides rel-
evant information on the scaling of traffic, it is clear that ex-
amining the mean value washes out the presence of anoma-
lies and outliers in the population. In particular, for fixed
values of kin,c and kout,c we observe a wide variation in
the strength associated with different clients. In order to
study the spread of strength values with respect to the num-
ber of connections, we show in Figures 6 and 7 (bottom) a
two-dimensional color plot indicating for each number of
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Figure 8: Distribution of the number of clients nC

handled by each server. The solid line has slope -1.8.

connections, the frequency of clients with a given strength.
While the plots confirm the accumulation of clients along
the power-law distribution studied previously, we also ob-
serve the presence of a large spread of strength values for
the same number of connections. In addition, we notice the
clear presence of outliers falling two to three orders of mag-
nitude below the expected value. These points correspond
to clients with a very large number of server connections
and a disproportionally small amount of traffic handled.
These anomalies might indicate malicious activity or mas-
sive scanning strategies. In particular, for outgoing client
data, points corresponding to a very large number of client-
to-server connections (kout,c) and a very low volume of out-
going traffic (sout,c) would imply some sort of scanning ac-
tivity, for example, a project trying to estimate the density
of Web servers in assigned IP space.

While further study and analysis are needed to fully ex-
ploit the possibilities of the analysis presented here, it ap-
pears that the study of large-scale traffic data might result
in a viable tool to detect anomalies and behavioral patterns
at the global level that may pass unnoticed through more
conventional intrusion detection systems.

4.2 Web Servers
Having looked at the behavior of Web clients, and having

found that there is no such thing as a typical client, we turn
to the behavior of Web servers. This analysis is perhaps
the more interesting of the two, since information on the
demands placed on a Web server is instrumental to both
server and network design, as well as modeling Web traffic.
We will follow the same general course as we did for client
behavior.

4.2.1 Traffic heterogeneity
In the case of Web servers, we again start by analyzing

the number of clients nC that each server handles. For our
sample, we get an average of 142 clients per server and a
standard deviation of 2.34 × 104. In Figure 8, we report
the probability distribution P (nC) indicating the likelihood
that a server handles nC clients. It is not surprising that we
again find a heavy-tailed distribution with power-law behav-
ior, as shown by the very large standard deviation. What
is more surprising is that the power-law behavior shows a
fit to P (nC) ∼ n−γ

C with γ ≈ 1.8 ± 0.1. It appears that
γ < 2 quite definitively, presenting us with a new scenario.
It is known that the first moment of a power-law distribution
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Figure 9: Probability distribution of the total in-
coming data (in-strength) and total outgoing data
(out-strength) of servers. The solid lines refer to
power-law behavior with slope -1.7 and -1.8 for the
upper and lower graph, respectively.

with exponent γ ≤ 2 diverges, which means that the average
value of the distribution is not statistically defined. This is
more peculiar than the case of power-law distributions with
2 < γ ≤ 3, such as the servers-per-client data reported in
Figure 3, where the average is defined but the variance is
not. In the case of clients-per-server data, the average de-
gree is bounded only by the finite size of the Web. In such
a situation, even the global mean number of connections is
no longer a physical intrinsic quantity. This extreme hetero-
geneity is not usually found in technological networks [17];
it provides no indication of a global average quantity and,
most importantly, no hint as to the scale to which it is most
appropriate to target the design of a general-purpose Web
server. As in the case of the client analysis, we also stud-
ied the probability distributions P (kout,c) and P (kin,c) that
describe the chance that any given server has out-degree
kout,c and in-degree kin,c, respectively. The analysis recov-
ers a power-law behavior with exponents γin ' γout ' 1.8,
consistent with the behavior of P (nC).

The server in-strength consists of the amount of data that
each server has received from its clients; this is the sum to-
tal of requests, form postings, and so forth. As was the case
with the corresponding client graphs, the sampling done at
the routers causes these values to be rescaled by two or-
ders of magnitude with respect to the actual values, with-
out affecting the shape of the distribution itself. We find
a mean value of 8.42 × 104 and a standard deviation of
5.41 × 106. Analogously, the out-strength of servers indi-
cates the amount of data sent to Web clients by each server;
this is probably the quantity of greatest importance when
designing Web server software. Bearing in mind the under-
estimate caused by sampling, we find a mean of 1.35 × 106

and standard deviation of 3.91 × 107. As shown in Fig-
ure 9, both distributions yet again match power-law behav-
ior P (sout,S) ∼ s−αout

out,S and P (sin,S) ∼ s−αin
in,S , this time with

αin = 1.71 ± 0.1 and αout = 1.8 ± 0.1. In this case we
are in presence of another harsh reality: there is no typical
amount of incoming data that a Web server can expect to
handle over the course of a day. This fact in itself is not
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Figure 10: Distribution of aggregate server-to-client
traffic. The solid line has slope -2.2.

surprising, given the broad range of popularity among Web
sites. What is surprising is that both the first and second
moments of the mean diverge. Analogously, there is no typ-
ical amount of outgoing traffic for a Web server. From the
standpoint of an arbitrary Web server, Web traffic has no
characteristic scale at all!

Finally, we consider the distribution of weights wji repre-
senting the amount of data sent from a particular server to
a particular client over the course of the day. The proba-
bility distribution showing the chance that the traffic on a
given server-to-client connection has a value wSC is no ex-
ception, and in Figure 10 we show the power-law behavior
P (wSC) ∼ w−δ

SC , with δ = 2.2± 0.1.

4.2.2 Behavioral patterns
Following the same lines as in the client analysis, we plot

the mean in-strength of servers of a given in-degree as a func-
tion of the in-degree. This allows us to explore the relation-
ship between the number of clients handled by a Web server
and the total amount of data received from those clients.
Figure 11 (top) shows the obtained behavior, yielding the
relation

〈sin,S(kin,S)〉 ∼ k−βin
in,S

with βin = 0.9± 0.1.
Figure 12 (top) shows that the relation between out-

strength and out-degree, i.e., traffic sent to clients as a func-
tion of the number of clients, exhibits the same behavior
with exponent βout = 0.9± 0.1. In this case, servers appear
to behave differently than do clients. The super-linear in-
crease in traffic with increasing degree is not found; on the
contrary, the data are compatible with a linear or slightly
sub-linear behavior. This suggests that Web servers have a
more conventional coupling between data traffic and num-
ber of connections, signalling a more predictable behavior
in this respect. As in the case of clients, the server scal-
ing exponents β for incoming and outgoing connections are
predictable from the exponents of the strength and degree
distributions α and γ, in agreement with Equations 1.

Finally, we study the spread of strength values with re-
spect to the number of connections. In Figures 11 and
12 (bottom) we map the frequency of servers with given
in-strength and out-strength as a function of the number of
client-to-server (in-degree) and server-to-client (out-degree)
connections, respectively. As with clients, we observe a large
variability around the expected average behavior at all val-
ues of connectivity. The presence of outliers is less notable
than in the client case, in agreement with the passive role of
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Figure 11: Behavior of the incoming traffic
(strength) sin as a function of the number of client-
to-server connections (degree) kin. Top: behavior of
the average in-strength 〈sin(kin)〉 as a function of the
in-degree. The behavior is linear on a double loga-
rithmic scale and is well approximated by power-law
behavior with slope βin ' 0.9. Bottom: frequency of
servers with a given in-strength for each value of the
in-degree.

servers. The presence of anomalies or outliers corresponding
to servers with very low in-strength and very high in-degree
could indicate the presence of distributed DoS attacks.

5. DISCUSSION AND FUTURE WORK
Several features of our data set merit further note. We

speculate that the larger size of the client-to-server graph
is a consequence of ongoing denial-of-service attacks and a
possible sampling bias in the routers toward smaller flows.
Though we are in contact with the router vendor to deter-
mine more exact details of flow sampling, we have no defini-
tive answer as of yet. If this bias does exist, it should not
affect the results of our analysis, as the effects we describe
persist over many orders of magnitude.

Though all of the results presented here derive from a sin-
gle day’s worth of traffic data, analysis of other days yields
nearly identical results. In the absence of any known catas-
trophic network events, we would expect this to be the case
simply because of the extreme size of our data set. We
know of no other study of Web traffic which has examined
this quantity of flow information, although there has been
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Figure 12: Behavior of the outgoing traffic
(strength) sout as a function of the number of server-
to-client connections (degree) kout. Top: behavior of
the average out-strength 〈sout(kout)〉 as a function of
the out-degree. The behavior is linear on a dou-
ble logarithmic scale and is well approximated by
power law behavior with slope βout ' 0.9. Bottom:
frequency of servers with a given out-strength for
each value of the out-degree.

large-scale analysis of Web traffic using Akamai server logs
and client packet traces [10].

It is natural to wonder whether the properties of these
distributions are changing over time. Others have reported
Web traffic as using a smaller percentage of total Abilene
traffic in 2001 [18], thus we suspect that traffic patterns are
indeed changing. We plan on repeating our analysis with
the intention of identifying long-term trends in global Web
traffic behavior.

Our study provides general evidence that Web traffic is
characterized by scale-free statistical distributions that sig-
nal a large heterogeneity of behaviors and the impossibility
of relying on typical quantities or characteristic properties.
In Table 1 we summarize the results obtained for the various
distributions analyzed in the present work. All of them are
heavy-tailed and exhibit standard deviations two to three
orders of magnitude larger than the mean values indicated
by the distributions. The presence of these overwhelming
fluctuations is underscored in the case of Web servers by
traffic distributions that follow power-law behavior with di-
verging first moments; here, no intrinsic average quantity
can be inferred from the statistical distribution. This fea-



Table 1: Summary of statistical properties of the
variable characterizing Web traffic data. For each
variable x we report the average value 〈x〉 and stan-
dard deviation σ. It is possible to appreciate how in
all cases the standard deviation is one to two orders
of magnitude larger than the mean. The exponent
characterizing the power-law behavior is evaluated
in each case by a best fit procedure of the distribu-
tion tail.

variable x 〈x〉 σ exponent

nS 3.52× 100 3.51× 101 2.4± 0.2
sin,c 9.28× 104 2.05× 106 2.1± 0.1
sout,c 1.11× 103 1.44× 105 2.2± 0.1

nC 1.42× 102 2.34× 104 1.8± 0.1
sin,S 8.42× 104 5.41× 106 1.7± 0.1
sout,S 1.35× 106 3.91× 107 1.8± 0.1

ture has major consequences for Web server and network
design. The fact that there is no typical amount of traffic
faced by a Web server means that no one server design can
be appropriate for all sites and the scalability of servers over
time will be uncertain.

Client traffic also has diverging fluctuations, but not a
diverging first moment. While this suggests a more regu-
lar behavior, clients exhibit a super-linear growth of traffic
handled as a function of their numbers of connections. This
behavioral pattern of client users points to a difficulty in
designing scalable client applications as well. We are de-
veloping techniques to classify traffic according to the type
of client: browsers, crawlers, scanners, etc. The statistical
behaviors of these applications are expected to be distin-
guishable at the level of flow data, and this may provide
additional insight into the design of scalable clients.

At the theoretical level, models of Web traffic must ac-
count for the fact that the traffic distributions follow power
laws so strongly that the familiar parameters of mean and
standard deviation are useless in characterizing the under-
lying system. In addition, the non-linear coupling between
traffic and connections calls for models able to produce non-
linear behavioral patterns and non-trivial correlations. An
open issue is then how to relate the scale-free properties of
the link structure of the Web with the Web traffic itself,
where neither Web clients nor servers operate according to
conventional distributions.

The fact that Web traffic follows distributions even more
scale-free than the link structure of the Web also has impli-
cations for search engine design. The PageRank algorithm
at the heart of Google deals solely with link structure, but
large-scale analysis of data in a transit network offers ad-
ditional information on how often users actually click on
those links. Using traffic data to weigh the edges in the link
network—thus turning PageRank into “ClickRank”—may
improve substantially the ordering of search results. We in-
tend to pursue this line of investigation in future research.
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