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ABSTRACT OF THE DISSERTATION

Life-like agents:

Internalizing local cues for reinforcement learning and evolution

by

Filippo Menczer

Doctor of Philosophy in Computer Science and Cognitive Science

University of California, San Diego, 1998

Professor Richard K. Belew, Chair

As computing and information environments become more complex, there is a need

for tools that assist users in ways that scale with the growth of such environments

and adapt to both the personal preferences of the user and the changes in user

and environmental conditions. In this thesis I attempt to abstract some core prin-

ciples from ecological adaptive processes, and cast them into a machine learning

framework. The thesis focuses on two mechanisms | local selection and internal-

ization | by which evolutionary algorithms can be: (i) e�ciently parallelized, for

adaptation in distributed environments; and (ii) integrated with both unsupervised

and supervised learning, for adaptation at di�erent spatial and temporal scales in

dynamic and heterogeneous environments.

These methods have been applied in the construction of populations of

adaptive information agents (InfoSpiders). Agents search online for information

relevant to the user, by traversing links in distributed information environments

such as the Web. I demonstrate feasibility of the approach by comparing the

performance of InfoSpiders with both exhaustive search and other heuristics, on

well-de�ned hypertext environments. InfoSpiders are capable of capturing essential

features of their spatially and temporally local context, thus adapting to complex

dynamic environments and user requests. InfoSpiders complement search engines

xiii



with respect to several of their di�culties. Engines provide global starting points,

based on statistical features of the search space (words); InfoSpiders use topological

features (links) to guide their subsequent search.

The same principles have also been applied to build better models of

ecological adaptation. I have developed a model and simulator called LEE (Latent

Energy Environments), whereby agents adapt by a genetic algorithm based on

local selection. This simple individual-based model results in the emergence of

density-dependent evolution, and allows the simultaneous study of adaptation at

the individual and population level. LEE has been used to analyze the roles of

di�erent types of environmental structure in shaping the selective pressures that

allow complex collective behaviors to evolve. I also report on the results of other

experiments, aimed at observing the interactions between di�erent evolving traits

| behaviors, morphology, and maturation | and di�erent forms of individual

plasticity | prediction, reinforcement learning, and imitation.

xiv



Chapter I

Introduction

I.A Motivation

As computing and information environments become more complex, there

is a need for tools that assist users in ways that scale with the growth of such envi-

ronments and adapt to both the personal preferences of the user and the changes

in user and environmental conditions. The situation is not unlike the one faced

by ecologies of organisms adapting in natural environments. In fact, attempts to

model the evolution of biological organisms have increasingly focused on the roles

of the environment, and computational simulations have allowed to make such

models more realistic.

I.A.1 The \arti�cial life bridge"

My research interests lie on a bridge between the natural sciences and

engineering. In one direction, I envision a ow of ideas from the way problems

are solved in the natural world to algorithmic solutions of complex computational

and information challenges. Genetic algorithms and reinforcement learning are two

examples of powerful and general machine learning methods derived from processes

observed in nature. As our computational environments become more complex and

life-like, adaptive techniques will mature and become integrated into the core of

1
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computer science.

In the other direction of the bridge, I advocate the use of e�cient and rig-

orous computational tools to test new models and theories about natural systems.

We must understand a system before we can build a paradigm of any usefulness

around it. If we are to take inspiration from nature as we attempt to tackle new

computational challenges, we must be humble in the face of nature's accomplish-

ments.

I have begun to build the pillars of my bridge around some of the ques-

tions that are already making the two sides visible to each other. Consider the

wide class of problems in which some \agents" must adapt to a complex environ-

ment, using only local, \on-line" interactions to determine appropriate strategies.

Internet-based applications and robotics, for example, typically deal with environ-

ments that can be very large, dynamic, noisy, unreliable, heterogeneous, and/or

distributed. The ideal agents would have to capture regularities at multiple spa-

tial and temporal scales, identify those environmental features that best correlate

with their performance, and internalize such features into their behaviors based

only on local context. Individual-based learning algorithms are limited in their

capability to capture global features and cover heterogeneous domains. Genetic

algorithms are prone to coarseness of scale and premature convergence. I have ex-

tended and combined both approaches into a common algorithmic framework that

overcomes these limitations by allowing single agents and populations to integrate

environmental signal over di�erent times.

How can we expand on the current adaptive and machine learning tech-

niques to incorporate nature's solutions to problems such as these? Biologists

are undertaking problems that seriously challenge the boundaries of mathematical

tractability and the adequacy of available analytical tools. What computational

wisdom should be o�ered to the natural sciences as they embark in the study of

natural systems of unprecedented complexity?
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I.A.2 From nature to technology

One of the exciting challenges brought about by the explosive develop-

ment of the Internet is the problem of helping users cope with the vast amounts

of unorganized, distributed information on the Web. There is a real need for tools

that allow users to quickly locate the documents they need. Traditional \informa-

tion retrieval" methods cannot keep up with the rapid changes of this environment.

We need to complement them with new algorithms that scale with the growing

number of documents. Further, users need personalized tools that can re�ne their

requests based on context and adapt to their changing, long-standing queries and

pro�les.

The di�culties posed by building \intelligent" agents for the Web make

this environment an obvious candidate for exploring the machine learning issues

outlined above. Not only is the environment very large, truly distributed and highly

dynamic, but the feature space | hundreds of thousands of words | severely

pushes the limits of current learning techniques. Part of this dissertation focuses

on the application of adaptive, situated agents to information discovery, retrieval,

and �ltering in distributed environments such as the Web.

One of the �rst issues that comes into light is how to model the environ-

ment; what are its assets from a learning agent's perspective? Statistical features

such as word frequencies are of course crucial dimensions. I argue that the \link-

age topology" structure imposed by information providers upon the organization

of documents is another important resource. Even in unstructured information

environments, authors tend to cluster documents about related topics by letting

them point to each other.

Another issue is how to choose agent representations allowing for the

emergence of e�ective strategies. It is desirable to build agents who can internalize

environmental features that appear locally correlated with their �tness, at di�er-

ent spatial and temporal scales. We discuss how to achieve this goal by using a

novel evolutionary strategy, in combination with a form of reinforcement learn-
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ing whereby both the population �tness and each individual's reinforcement are

derived from the same environmental signals, sampled over di�erent time scales.

Additionally, these signals are seamlessly inuenced by the user's relevance feed-

back (when available). We would like to arm our agents with the capability to

internalize these signals as well.

I.A.3 From technology to nature

General simulation tools attempting to model the behaviors of natural

populations interacting in real environments often fail in one of two ways. If

they are rigorous, they may be too simplistic to capture the complexities of the

interactions they aim to model. If they are broad in scope, they may be too

convoluted to allow for formal analysis.

To correct this situation, we need models that allow for: exible individ-

ual representation; both population evolution and individual learning; user-de�ned

environmental of quanti�able complexity; and the potential for open-ended behav-

iors. The thesis describes several steps taken in these directions.

I.B Overview

In this thesis we attempt to abstract some core principles from ecological

adaptive processes, and cast them into a machine learning framework. Distributed

evolutionary algorithms are a recent paradigm springing from models developed in

the arti�cial life community. One of the de�ning characteristics of the paradigm, on

which this thesis focuses, is the use of local selection schemes. The basic mechanism

is extremely simple: agents in a distributed population use and collect energy

from local interactions with the environment. An agent dies when it runs out of

energy, and reproduces when its energy passes some �xed threshold. Energy is

a conserved, distributed, �nite resource and is shared by the population. This

indirect interaction is the main form of communication and competition among
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agents.

Chapter II introduces and discusses local selection. We characterize its

advantages and shortcomings. First, its local avor provides the natural setting for

truly distributed adaptive algorithms. Local selection on one hand frees the evolu-

tionary computation model from the bottleneck of any centralized, global control,

allowing for e�cient distributed implementations. Second, local selection is better

suited for tasks such as multimodal optimization, requiring a cover of the adaptive

landscape rather than optimizing convergence. In these cases, local selection is

both e�ective and more e�cient than other methods (e.g., �tness sharing) that

have been put forth to deal with such problems.

This approach is not without its limitations, of course: local selection

has thus far proven unsuccessful for combinatorial optimization problems, due to

its minimal selective pressure; it is also infeasible for environments that cannot

be \marked" or \queried" as data structures by the agents; and �nally, it may be

di�cult to apply, depending on the isomorphism necessary between the problem

and the environmental model required for the algorithmic implementation.

The characteristic of local selection that makes it a most appealing ab-

straction from a machine learning perspective is that it creates a tight coupling

between adaptation at the population and individual levels. Local selection and

reinforcement learning can be seen as two adaptive forces feeding on the same envi-

ronmental signals, integrated at di�erent temporal and spatial scales. This allows

local interactions between learning and evolution to be driven by the environment

in a natural way. Single agents can internalize the features of the environment

as they are perceived in the local areas where they are situated, simplifying the

problems they face.

These issues are explored in the simple context of abstract graph envi-

ronments. These are randomly constructed with given statistical properties, so

that the mechanisms of local selection and internalizations can be evaluated most

easily.
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Once we have achieved a better understanding of such abstractions in

controlled machine learning experiments, the next goal of the thesis is to apply the

principles of local selection and internalization to construct more realistic models

of adapting biological entities, without sacri�cing tractability. We have developed

a model and simulator called LEE (Latent Energy Environments), whereby agents

adapt by a steady-state genetic algorithm based on local selection. This simple

mechanism alone results in the emergence of density-dependent evolution, captur-

ing the quantitative behavior of this class of population growth models with an

individual-based model.

LEE is introduced and described in Chapter III. While striving to pre-

serve tractability, we have enriched LEE with exible individual representation via

user-speci�ed sensors, motors, and neural networks; unsupervised learning by re-

inforcement or sensory prediction; user-de�ned, physics-grounded speci�cation of

environments of graduated complexity; and open-ended behaviors by user-de�ned

metabolic interactions.

We have used these features to explore several adaptation questions. In

one set of experiments, we analyzed the roles of di�erent types of environmental

structure in shaping the selective pressures that allow complex collective behaviors

to evolve. We showed, for example, that complementary metabolic systems can

lead to the preservation of biodiversity, and that seasonal uctuations can divide

individuals into subpopulations with di�erent behaviors exploiting seasonal niches.

In a second set of simulations, we observed the coevolution of behaviors

with morphological traits, speculating whether learning could favor the evolution

of informative sensors.1 We found that the signals provided by the environment for

reinforcement learning are in fact e�ective, when the sensory apparatus can inter-

nalize the external features whose correlation with �tness has to be discovered by

evolution. Finally, we modeled the interactions between maturation and evolution,

1We assume non-Lamarckian evolution, so that phenotypic changes due to learning are not
inherited by o�spring.
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�nding empirical support for the hypothesis that the development of behavioral

skills prior to reproductive maturity can contribute to delayed maturation.

The more applied side of this thesis deals with the transfer of arti�cial

life-inspired algorithms from ecological adaptation to distributed computation and

information management problems. Chapter IV discusses the application of these

methods in the construction of populations of adaptive information agents (InfoS-

piders).

Agents search online for information relevant to the user, by traversing

links in distributed information environments such as the Web. The idea is to

complement search engines with respect to two of their di�culties. (i) Scaling: the

static character of the index behind any search engine cannot keep up with the

rapid dynamics of the growing and changing Web. (ii) Personalization: the general

character of the index building process cannot exploit the di�erences between the

needs of di�erent users. We think that InfoSpiders could start up where search

engines stop. Engines provide global starting points, based on statistical features

of the search space (words); InfoSpiders can use topological features (links) to

guide their subsequent search.

InfoSpiders employ both unsupervised and supervised adaptation. Driven

by the user's initial query and interactions with the environment, via local selec-

tion and reinforcement learning, the population forages on information perceived

as relevant. Agents identify relevant niches and exploit their structure. The evolu-

tionary process, at the population level, lets agents evolve internal representations

allowing them to heuristically choose links in an intelligent and autonomous way.

The representation forces each agent to focus on a small number of word features

that appear locally correlated with relevance. The presence and position of such

words in documents aid InfoSpiders in deciding where to go next. Each agent can

learn by reinforcement, during its lifetime, how to combine these features most

e�ectively. This task is feasible precisely because only a small number of word

features are selected by each agent | those that are most useful where the agent
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is situated. The user's relevance feedback, if available, provides InfoSpiders with

the supervision they need in order to adapt their search behaviors to the (possibly

changing) personal preferences of the user.

The results reported in Chapter IV, based on theoretical analysis, sim-

ulations, and actual experiments on Web-based corpora, are very encouraging.

We �rst show that linkage topology can indeed be detected and exploited by dis-

tributed agents. We then demonstrate feasibility of the approach by comparing

the performance of InfoSpiders with both exhaustive search and other heuristics,

on a well-de�ned hypertext environment. The InfoSpiders algorithm outperforms

exhaustive search by an order of magnitude, and its distributed nature allows it

to beat centralized algorithms as well in resource-bound experiments.

The contributions of the thesis are recapitulated in Chapter V, especially

with respect to the large body of related research in the di�erent �elds that this

thesis touches on. Several directions in which this research program can be con-

tinued are also discussed.

This thesis reects an interdisciplinary array of research interests, and

therefore touches on such diverse areas as machine learning, genetic algorithms,

arti�cial life, theoretical ecology, and information retrieval. Here is a map of the

main general subjects concerning subsequent chapters.

Chapter II Evolutionary and genetic algorithms, reinforcement learning, neural

networks, graph-theoretic algorithms, combinatorial optimization

Chapter III Arti�cial life, evolution, learning, life histories, ecology

Chapter IV Information retrieval, machine learning, multi-agent architectures,

World Wide Web, distributed systems

Chapter V All of the above.



Chapter II

Theory

Environmental features play central roles in the adaptation of agents

situated in complex environments. Whether we are interested in studying the

behaviors of (natural or engineered) agents or in devising algorithms through which

agents can perform tasks autonomously and e�ciently, we cannot make much

progress without considering the context in which such behaviors and algorithms

are evaluated.

As our computation and information environments become more complex,

there is a need for tools that assist users in ways that scale with the growth of such

environments and adapt to both the personal characteristics of the user and the

changes in user and environmental conditions. The situation is not unlike the one

faced by ecologies of organisms adapting in natural environments. Such natural

agents have to adapt to the topology of their environments, internalizing into

their behaviors (via evolution or learning during life) those environmental signals

and cues that they perceive as leading to their well-being. The environmental

features that are best correlated (or anti-correlated) with �tness are the most

useful internalizations.

Consider for example an ant's environment: its association between pher-

omone and food is internalized into the ant's pheromone-following behavior. Fur-

ther, this behavior can be implemented by any ant without need for centralized

9
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control; �nally, the ant can still resort to a behavior, such as a random walk,

that can be implemented in the absence of any appropriate environmental signals.

These capabilities of an ant colony | internalization of environmental signals, dis-

tributed control, and integration of externally driven and endogenous behaviors

| are also highly desirable properties for agents carrying out tasks in complex

arti�cial environments.

Much of the machine learning research of the recent years has in fact fo-

cused on ways to capture environmental features | e.g., spatial and/or temporal

regularities such as gradient information and statistical correlations | and inter-

nalize them into adaptive algorithms. This chapter focuses on a number of machine

learning abstractions inspired by ecological models, and characterizes them with

respect to e�ciency, feasibility, and e�ectiveness in general application classes.

The following chapters will evaluate the ideas introduced here in more speci�c

modeling and application domains.

II.A Background: Machine learning

Consider an agent situated in a complex environments and performing

some task. Typically, the agent will have access to some sensory information

about the environment. This input can be elaborated, and combined with state

information accumulated in the past, to compute an output. The agent will typi-

cally have some motor organs to convert its outputs into motor actions. Changes

in the environment, together with the results of the agent's actions, will produce a

dynamic stream of inputs and outputs. If we are observing an agent to study how

it functions and what task it performs, we can characterize this process | the way

in which the agent interacts with the environment | as the behavior of the agent.

If we are instead constructing an agent in order to perform some speci�ed task or

solve some problem, then we can characterize these interactions as a strategy or

algorithm implemented by the agent.
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Most realistic agents (animals, robots, and software agents) have limited

access to environmental information; this is determined by the location of the agent

and by some proximity metric. For a robot, physical two-dimensional space and

Euclidean distance normally determine proximity. For a bird, three-dimensional

space is more appropriate. For an electronic mail agent, the environment is best

described by a computer network. Irrespective of whether we have a descriptive

or a normative agenda, interactions between agents and environments are at the

very core of understanding how agents can perform their tasks.

II.A.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are the general class of algorithms inspired

by the evolutionary paradigm of adaptation by survival of the �ttest, and repeated

selection and reproduction. An initial population of candidate individuals, each

representing a solution of the problem at hand, or a strategy to perform the task

at hand, is generated randomly. Then the population is repeatedly subjected to a

cycle in which: (i) individuals are evaluated with respect to their �tness in solving

the problem or performing the task; (ii) the best individuals are selected for repro-

duction; (iii) clones of the selected individuals are created and then subjected to

some modi�cation operators; and �nally, (iv) a new generation is formed with the

newly created individuals. The algorithm is halted when some stopping condition

is met, for example when the population reaches convergence, i.e., it becomes too

homogeneous to warrant any additional progress.

The are numerous variants of this basic algorithm. For example, many

problem-independent or problem-speci�c operators can be applied to o�spring to

improve on the process by maintaining diversity, combining information from dif-

ferent candidate solutions, or performing local search to locate the nearest local

optimum solution. Di�erent representations for candidate solutions can be used,

such as bit strings, real-valued vectors, or rule-based systems.

Evolutionary algorithms employing binary representations and crossover
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operators to recombine individuals and form solutions from sub-solutions are called

genetic algorithms (GAs). The theory behind GAs rests on the so-called schemata

theorem [67], showing that for binary representations the algorithms exploits the

regularities of the search space in a more or less optimal way. A schema is a set

of solutions obtained by replacing bits in a solution string by wild-card characters.

The crossover operator recombines solutions by preserving short, above-average

schemata. The schemata theorem depends on the validity of the building blocks

hypothesis| the idea that partial solutions can be combined to produce more and

more complete solutions. When this hypothesis holds, selection and crossover are

said to allocate individuals in the population to schemata in a near-optimal way by

implicitly testing an exponential number of schemata in parallel. For non-binary

encodings the role of crossover is less clear, although the building blocks hypothesis

has been extended to real-valued representations [125]. A detailed description of

evolutionary and genetic algorithms is out of the scope of this thesis, and interested

readers are referred to an extensive literature [68, 53, 132].

Selection and locality

Selection and recombination are the major sources of interactions among

individuals in EAs. These two mechanisms can be seen as ways to implement

competition and cooperation among solutions, respectively. They are not inde-

pendent of each other, and each can play an important role in optimizing the

�tness function, by exploiting the information in the population and exploring

promising alternatives. In this thesis, however, we will mainly focus on selection

alone.1 In so doing, we will miss the discussion of the possibly crucial interac-

tions between selection and recombination, and of the potential contributions of

crossover when the building blocks hypothesis holds. However, this choice will

simplify the discussion by considering the issue of communication due to selection

in isolation of other sources of interaction. While neglecting crossover may impose

1Crossover will be applied in problems where the representation makes it obviously feasible.
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a serious limitation on the performance of EAs (e.g., in combinatorial optimization

problems), this issue has received extensive attention elsewhere [58, 86].

A selection scheme is a map from a distribution of �tness values to a

distribution of o�spring numbers, over the population.2 There are many selection

schemes that have been adopted in EAs. These can be deterministic or stochastic,

threshold, linear or nonlinear functions, based on rank or actual �tness values,

or more complicated mechanisms. In general, however, selection maps share the

feature of being computed in a centralized, global manner. For example, if popula-

tion size is to be kept constant, then the o�spring distribution must be scaled by

a normalization factor that takes into account the whole population; or if rank is

used, then all individuals must be evaluated to assess their relative position. There

are selection schemes that do not require the whole population to be evaluated to

determine the number of o�spring of a single individual. For example, in tourna-

ment selection, an individual need only be compared with k� 1 other individuals,

where k is the size of the tournament (k � 2). However, an individual must be

compared with at least one other.

Let us refer to the locality of a selection scheme as the lack of dependencies

in the computation of the selection map. The locality of selection is a topic of

increasing interest in the EA/GA community [54]. One set of reasons has to do

with the problem of premature convergence, and ways to prevent it in the presence

of crossover by maintaining diversity and/or restricting mating [43].

Parallelization

The convergence issue is related with the general concern for the paral-

lelization potential of GAs, and performance implications [56, 37]. Local selection

in parallel GAs usually stems from imposing geographic constraints on genetic

search. This may be a useful way of assisting the formation of diverse subpopu-

2Here we use \�tness" in the sense on EAs; in biology, �tness is commonly de�ned as the
number of o�spring per individual.
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lations [58, 33]. The motivation however is in avoiding the communication over-

head imposed by global selection schemes; di�erent processors are allocated to

subpopulations and we want to minimize inter-process dependencies to improve

performance.

The implications of local and global selection on convergence in massively

parallel GAs have been studied extensively. The poor match between parallel im-

plementations and the standard GA notion of optimization by convergence is noted

for example by McInerney [110], who distinguishes between convergence | all in-

dividuals converging on the best solution | and cover | all good solutions being

represented in the population | as measures of successful termination. Parallel

GAs are more amenable to cover optimization than to standard convergence crite-

ria, due to the limited communication inherent in most parallel implementations.

This limited communication normally implies that there are isolated subpopula-

tions. Applying a parallel GA to optimize a two-mode �tness function, the tradi-

tional selection schemes | truncation, linear rank, and proportional selection |

cause the population to rapidly converge to one mode of the �tness function or the

other, while localized selection strategies generate two separate populations that

have converged, each to a separate peak [110].

Niching

Independently of parallel implementations, the problems of ill-convergence

exhibited by global selection schemes for multimodal �tness functions is a general

issue related to aspects of natural adaptation | niching and speciation | that

have seldom been included in formal treatments of GAs. According to Goldberg,

we may view a niche intuitively as an organism's job or role in an environment,

and we can think of a species as a class of organisms with common characteristics.

He writes:

As reproduction, crossover, and mutation proceed, the population
climbs the [�tness] hills, ultimately distributing most of the strings
near the top of one hill [. . . ] This ultimate convergence on one peak
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or another without di�erential advantage is caused by genetic drift |
stochastic errors in sampling caused by small population sizes. Some-
how we would like to reduce the e�ect of these errors and enable stable
subpopulations to form around each peak.

We also might like to modify the performance of simple genetic algo-
rithms in multimodal problems where the peaks are not all of the same
magnitude [. . . ] Perhaps we would even like to allocate subpopulations
to peaks in proportion to their magnitude [. . . ]3

Goldberg also points out that, although there is a well-developed bio-

logical literature in both niching and speciation [65], its transfer to the arti�cial

genetic search has been limited. Standard GAs are ine�ective for multi-niche or

multimodal function optimization, due to high selective pressure and premature

convergence [44].

Fitness sharing

Several methods have been devised to deal with this problem. The most

notable are crowding [36] and �tness sharing [55]. In both of these methods, �tness

is somehow scaled by some measure of similarity among individuals. Shortcomings

of both methods are problem-dependency and ine�ciency; if p is the population

size, selection requires time O(p) rather than O(1) per individual. While the time

is still polynomial, the slowdown becomes important for practical cases with large

populations. Moreover, it turns out that the population size required to maintain

the population across niches is estimated to grow super-linearly (with a large con-

stant) with the number of niches (assuming this is known a priori) [107]. Further-

more, computing similarity imposes a large communication overhead for parallel

implementations.

All methods for multimodal optimization imply looking at �tness as a

�nite resource to be shared by the population. A typical application of these

methods is game playing, where we attempt to evolve strategies that defeat many

3From Goldberg [53], pages 185{197.
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opponents, rather than just the best opponent. In this domain, since �tness comes

from competitions between players, the shared resource can be represented by a

population of test cases (opponents) coevolving with the population of solutions

(strategies) [146]. This is a special case of local selection, because a solution is

tested against the resource rather than the rest of the (solution) population.

Dealing with real problems often leads to modi�cations of the selection

mechanism aiming at maintaining diversity. One example is to tune the selec-

tive pressure by adaptively scaling the �tness function in roulette-wheel selection

[127]. More generally, developmental processes such as maturation and learning

can interact with �tness evaluation to adapt the selection process to the local char-

acteristics of the function being optimized [64]. The role of selection for genetic

multimodal optimization remains an active area of research in the GA community

[60, 108].

Steady-state

An aspect of EAs that is indirectly related to locality is the generation

gap. If all the individuals in the population are evaluated together, and the previous

population is completely replaced with a new one, we say that the GA proceeds in

lock-step generations. If instead a subset of the population is replaced at a time,

then generations are interleaved through time and the generation gap is reduced.

In the limit of minimal generation gap, one individual is evaluated and replaced at

a time; in this case we have a so-called steady-state EA. Decreasing the generation

gap has been shown to preserve diversity within the population and slow down

convergence [38].

The relation between generation gaps and locality is that a steady-state

algorithm with local selection can be executed in a distributed fashion, with in-

dividuals being evaluated asynchronously. Thus steady-state and local selection

are both necessary conditions for distributed implementations of evolutionary algo-

rithms. One important consequence of this distributed model is that the population
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size does not remain constant, and extinction is possible.

We can emulate a distributed EA by sequential calls to the individuals.

The order of these calls can be randomized so as to minimize the spurious inter-

ferences of the sequential emulation [71]. However, the reverse is not possible; in a

distributed system, where each individual may be evaluated on a di�erent machine

and there is no centralized control or synchronization, an individual must remain

independent of the rest of the population.

II.A.2 Endogenous �tness

Localizing selection implies that the evaluation of an individual �tness

becomes an endogenous process. Lacking a central, exogenous control mechanism

to normalize �tness and maintain a constant population size, an individual may

internally generate decisions as to its �tness and reproductive value. Much interest

has been devoted in the recent years to the endogenous �tness paradigm, especially

in the arti�cial life community [2, 175, 22, 13]. The main motivation is to model

open-ended evolution. Mitchell and Forrest [133] point out that, although it is

relatively easy to implement endogenous �tness strategies, there is virtually no

theory describing the behavior of genetic algorithms under these circumstances.

The lack of an explicit, exogenous �tness function allows adaptation to emerge

naturally from interactions between organisms and their environment (which in-

cludes other organisms). It is the complexity of the environment that creates the

selective pressures shaping the adaptive landscape.

Both the terms open-ended and endogenous �tness capture an important

aspect of the distinctive features that discriminate these models from classic GAs:

namely, the fact that the �tness function is not explicitly de�ned in terms of be-

havior. The stress therefore is on the creative power of endogenous �tness models,

which is in fact one of the main motivating factors for the arti�cial life model

described in Chapter III.

Another aspect of endogenous �tness, even more central to this thesis,
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is that it can be computed locally. From an engineering point of view, this al-

lows for distributed implementations as described in the previous section. From a

modeling point of view, this results in a stronger role of the environment in guid-

ing the evolutionary process. With endogenous �tness, selective pressure results

indirectly from the local competition for the �nite resources in the shared environ-

ment. Ecologists study just such situations in natural systems. If the individuals

interact exclusively by sharing resources, they say that �tness is density dependent

[150]. The lack of a constant selective pressure allows individuals to explore the

adaptive landscape without competing with others who are not part of their own

local environment.

II.A.3 Reinforcement learning

Most learning schemes proposed for agents who must obtain all their input

by interacting with the environment are based on some form of reinforcement.

Reinforcement is a weak, unsupervised learning paradigm and thus appropriate

for autonomous, situated agents that can use environmental cues as reinforcement

signals [79]. Reinforcement learning algorithms are generally based on a simple

idea: repeat actions that result in positive reinforcement, and inhibit those that

cause negative reinforcement. When actions are motor responses to sensory input

about the state of the environment, reinforcement learning is called associative [8].

Di�erent reinforcement learning techniques have been proposed that focus

on di�erent aspects of the learning problem: temporal di�erence [172], prediction

[138], and the successor representation [34] deal with temporal characteristics of the

sequence of environmental input states; evolutionary reinforcement learning [1, 11]

considers the case in which the reinforcement signal itself has to be evolved by the

adapting agents; Q-learning [183] and the adaptive heuristic critic [9] attempt to

build models of the environment while learning the task [96, 140].

Because of the active role played by the environment, reinforcement learn-

ing is particularly suitable as a model of individual adaptation, as compared to
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species-level adaptation, when we look at interactions between learning and evo-

lution in an adaptive population (see [97] for a survey of simulation work on the

subject). Evolving agents are better adapted to non-stationary environments when

they are allowed to learn by reinforcement [98]. Individuals are also able to pick

up local environmental cues at smaller time scale than populations [2].

Reinforcement is also one way to model the internalization of environ-

mental information into an adaptive agent. The reinforcement signal shapes the

adaptive response of the agent. Internalization can occur in any adaptive process,

be it based on an individual or a population. A dynamic correlation may exist

between performance (or �tness) and local features of the environment, signaled

by the sensory system of the agent. Locality may be spatial or temporal: since

a situated agent has bounded velocity and size, the concepts of space and time

locality are in fact dual.

In evolutionary computation, we can think of �tness as a reinforcement

signal for a population representing a distribution of solutions. Therefore the idea

of internalization is found in extensive GA literature as well, pointing to ways in

which information can be transferred from environmental cues to search strategies.

E.g., the topology and smoothness of the data space determine appropriate search

parameters and operators [23, 125]. Fitness autocorrelation can also be used as

a measure of the di�culty of the task [77, 103, 46]. An analogous idea is that of

self-learning or second-level learning of strategy parameters, as a powerful mecha-

nism of internal adaptation of the algorithm with respect to the objective function

topology, in the framework of Evolution Strategies [161]. While the real world

is complicated and somewhat unpredictable, natural environments also exhibit a

great deal of structure that a properly designed agent can depend upon and even

actively exploit [70].
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II.B Local selection

The mechanism that we associate in this thesis with local selection (LS)

and endogenous �tness is extremely simple: agents in a (possibly distributed)

population use and collect energy from local interactions with the environment.

An agent dies when it runs out of energy, and reproduces when its energy passes

some energy threshold.

The algorithm in Figure II.1 serves to illustrate the basic LS idea. The

framework is basically that of a steady-state EA. Note (step 3) that actions result

in energetic bene�ts only inasmuch as the environment has su�cient energetic

resources; if these are depleted, no bene�ts are available until the environmental

resources are replenished. Energetic costs are incurred by any action. Costs and

replenishment determine the carrying capacity of the environment that in turn

determines population size. An agent reproduces or dies based on the comparison

between its current energy level and the �; ! thresholds (step 5). Energy intake is

the currency by which we measure the success or failure of behaviors with respect

to the environment. The only form of communication among agents is their shared

use of the �nite energy resources.

In a standard EA implementation based on the pseudocode of Figure

II.1, the input and output steps correspond to the evaluation of a candidate so-

lution. They may also include a local search phase, if warranted by the prob-

lem/algorithm. The net energy intake is the individual's �tness. The reproduc-

tion step of course comprises cloning, random mutations, and optionally other

genetic operators such as crossover and/or problem-speci�c local search. In a non-

distributed task/algorithm, the environment may reduce to a single global process

with the trivial role of ensuring balanced allocation of computational resources to

the individuals.

In a multimodal or distributed task, the environment models the prob-

lem space and the resources that are locally available to individual solutions. In
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initialize population of agents, each with energy E0

while there are alive agents

for each agent i

1. input: sense environment

2. output: compute action a

3. update energy:

Eenvt  Eenvt � benefit(a)

Ei  Ei + benefit(a) � cost(a)

4. optional learning

5. selection:

if (Ei > �)

reproduce(i)

Eoffspring  
Ei

2

Ei  
Ei

2

else if (Ei � !)

die(i)

end

end

Eenvt  Eenvt + Ereplenish

end

Figure II.1: Pseudocode of EA with local selection.

such cases the distinction between local and global interactions among individu-

als becomes important; the selection mechanism and environmental resource model

capture the nature of such interactions. In a standard EA, an individual is selected

for reproduction based on how its �tness compares with the rest of the popula-

tion. For example, proportional selection can be modeled by a choice of thresholds

� = ! = hEi, where h�i indicates population average; the reproduction rate would

then be proportional to how rapidly an agent accumulates energy, with respect to

the rest of the population. Likewise, binary tournament selection can be modeled

by � = ! = Er where the subscript r indicates a randomly picked individual.

Let us de�ne LS as a scheme in which � and ! are independent of the

rest of the population. In the rest of the thesis we will use � = 2E0 = const > 0

and ! = 0. This way, interference among individuals is reduced to the sharing

of local resources | the amount of interaction allowed by the distributedness or

multimodality of the task at hand. Energy is consumed by action costs, created by
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Global Selection Local Selection

reproduction threshold � = f(E1; : : : ; Epop) � = const

�tness normalization
relative

(ranked population)
absolute

(shared environment)
conserved quantity selective pressure entropy

search bias exploitation exploration
convergence unimodal multimodal

adaptive criterion optimization cover
solutions best (fragile) good (robust)

biological equivalent r-selection K-selection

Table II.1: Schematic comparison between the local and global selection schemes.

environmental replenishment, and conserved at reproduction (parents share energy

with o�spring) and death (agents die as soon as they run out of energy). Table II.1

illustrates schematically the main implications of the di�erent selection schemes.

Some of the entries in the table will be justi�ed in later chapters.

The removal of selection's centralized bottleneck allows for parallel EA

implementations. It is also evident that LS is an implicitly niched scheme and

therefore it naturally enforces the maintenance of population diversity. These

factors in our opinion make LS a central issue in today's EA community [37,

108]. It is then essential to characterize the problem domains in which LS is

applicable and/or advantageous, and estimate the costs involved. In section II.E

we discuss two problem domains, one where LS proves advantageous over global

selection schemes and one where it does not. We conclude the chapter by discussing

the consequences of these experimental observations for a fair evaluation of LS

methods.

II.C Internalization

A crucial feature of local selection that can act both to its advantage and

detriment, is its weak selection pressure. Consider the energy level throughout

an agent's lifetime depicted in Figure II.2. The agent reproduces around time 35,
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Figure II.2: Typical energy dynamics of an agent during its lifetime. The higher

curve plots the level of accumulated energy as a function of time, resulting from

the instantaneous changes in energy plotted by the lower curve. The selection

threshold is � = 2. With the exception of the reproduction event, the energy level

is the integral of the lower curve.

giving half of its energy to the o�spring. Finally the agent runs out of energy and

dies shortly after time 90. Such selection events are rare. As long as the energy

level uctuates between 0 and �, there is no selective pressure.

While an agent interacts with the environment, its sensors may pick up

many signals from the environment, Some of these may be pure noise, others may

contain information correlated with the performance of the agent. If the agent

has access to reinforcement signals from the environment that somehow assess the

appropriateness of its actions, then such signals can be used as reward or penalty

signals to adjust the agent's behavior during its life. This is the basis of the

reinforcement learning framework [140].

Agents performing in real, complex environments have access to many
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signals. The problem is not so much whether some of these signals contain useful

information, but rather how to identify those among the many cues that best corre-

late with performance and may allow the agent to discriminate between good and

bad behaviors. We will discuss in the following chapters how both natural agents

in physical environments and software agents in networked information environ-

ments can deal with this problem. For now assume that an agent has identi�ed,

or learned to compute, a \good" signal, positively correlated with its performance.

Imagine this is the energy change computed in step (3) of the algorithm in Figure

II.1.

Such instantaneous energy change corresponds to the time derivative of

the agent's energy level, and is also plotted in Figure II.2. This signal is continu-

ously available to the agent, and any reinforcement learning scheme can be used

to adjust the behavior of the agent so that actions perceived to lead to rewards

are reinforced, and action perceived to lead to penalties are discouraged. One

such simple reinforcement learning policy, using the sign of the energy change as

a reward/penalty signal, would be as follows:

if benefit(a) � cost(a) > 0 then increase prob(a)

else decrease prob(a):

With this type of individual learning scheme implemented in step (4) of the al-

gorithm in Figure II.1, we imagine that the consistent rewards between time 0

and 12 in Figure II.2 might have warranted changes leading to an earlier repro-

duction; likewise, the prevailing penalties incurred between time 70 and 90 might

have advised changes leading to a delayed death.

Others have shown that evolving agents can build their own reinforcement

signal and then use it to become better adapted to their environment than possible

with evolution or learning alone [2, 11]. We consider these phenomena as examples

of internalization rather then second-level learning (cf. Section II.A.3) because the

information being internalized is not about the learning algorithm, but about the

environment in which the task is to be learned.
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It is normally di�cult for GAs to select for features that do not have a di-

rect e�ect on �tness. Second-order interactions with �tness, such as those involved

in second-level learning, are often overcome by genetic drift [126]. The above ex-

ample of internalization, as well as other cases that will be illustrated in this thesis,

occur with evolutionary algorithms that employ some form of endogenous or local

�tness. This is no coincidence: since selective pressure is weaker with LS than with

global selection, environmental signals whose correlation with �tness is relatively

weak can be detected before being obscured by random drift, so that they can be

internalized by the adaptive process. We therefore hypothesize that local selection

is a necessary condition for an evolving population of situated agents to internalize

local features of their dynamic environment into their adaptive behavior. Evidence

in support of this hypothesis will be given throughout the remainder of the thesis.

Internalization is related to other aspects of learning that have been stud-

ied extensively. Suppose an agent has to learn to produce good responses to en-

vironmental inputs; suppose further that the environment is dynamic, noisy, un-

reliable, inconsistent, or some combination of these. If the agent could \observe"

the environment from the outside, studying the most appropriate actions in any

situation and analyzing the long-term consequences of each action, while remain-

ing shielded from any risk, then it could wait until it has accumulated su�cient

con�dence. Then and only then, it would use its knowledge, or environmental

model, to construct a policy or behavior.

However, such ideal conditions rarely exist in realistic environments. Of-

ten the agent will not be able to wait and test actions without paying their potential

consequences. For example, if an action is lethal, the agent cannot learn this with-

out losing the opportunity to put such knowledge to use! The situation in which

an agent must learn by trying, and immediately apply its experience to shape its

policy, is called on-line learning.

Another limitation for realistic agents is that they may not be able to

freely choose the environmental conditions they want to explore and test; an ac-
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tion will typically a�ect the environmental inputs that the agent will experience

following that action. This situation is called active learning and is related to the

exploitation/exploration dilemma. The latter refers to the problem faced by agents

who have to continuously decide between performing actions that are believed to

give good reinforcement, and actions that are not well understood in order to gain

information about their value.

Finally, an agent may not see the immediate consequences of its actions.

In such cases, referred to as delayed reinforcement, it is di�cult to assess how past

decisions a�ect and lead to the current situation. Further complication arises when

temporal dependencies make it possible for combinations of actions to a�ect the

future.

It easy to see that all these learning problems | on-line learning, active

learning, and learning from delayed reinforcement | may add signi�cantly to the

di�culty of the task faced by adaptive agents in complex environments. In the

presence of many environmental signals detectable by the agent's sensory inputs,

such problems make it even more crucial for an agent to discriminate among the

signals and detect those that represent the best cues.

In summary, simple reinforcement learning algorithms can be e�ective

when the agent can easily identify the reinforcement learning signal. In many

complex learning environments, agents do not have such luxury. The problem

then becomes to learn to identify useful environmental cues and internalize them

into the learning algorithm as reinforcement signals. Which signals represent the

best cues may depend upon spatial and temporal locality, so that the agent must

continuously adapt not only its policy, but its choice of internalized signals as well.

Internalization is made both more complicated and more necessary when agents

must learn on-line, actively, and/or from delayed reinforcement.
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II.D Duality of reinforcement learning and evo-

lution

An e�ective internalization of environmental signals in conjunction with

reinforcement learning during the lifetime of an agent can obviate the problem

of weak local selective pressure. More generally, it can allow agents to pick up

cues that are just not detectable at the time scales of evolutionary adaptation.

Conversely, local selection is based on the same reinforcement signals used for

individual learning, but these are integrated over longer times so that short-term

and short-range uctuations are averaged out, producing agent behaviors that are

more robust in the face of noisy, inconsistent, or unreliable cues.

Evolution by local selection and learning by internalization of reinforce-

ment signals are thus two faces of the same coin. Each process uses information

from the environment to improve on its \unit of adaptation." For reinforcement

learning, the unit is the agent and the signals are sampled instantaneously; for

evolution, the unit is the population and the signals are integrated over time. One

might view local selection as the extension of reinforcement learning from individ-

uals to populations, or as reinforcement evolution. The two forms of unsupervised

adaptation can be combined together to cover the di�erent temporal and spatial

scales at which useful cues can be detected.

We are interested in evolution and learning as paradigms of adaptation.

These two processes are not easy to distinguish in general, and in fact interactions

between the two are at the center of abundant debate (see, e.g., [17]) and of this

thesis as well. Locality is one dimension along which we can discriminate between

these two processes.

Evolution is \global" both in space and in time. A population of individ-

uals samples a possibly large portion of the environment and collects �tness data

accordingly. Evolution can work in the absence of local information in the �tness

surface and thus can be used as a \method of last resort." But the adaptive value
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of an individual's behavior is unimportant as a contribution to genetic adapta-

tion, unless its selective advantage is such as to grant a large enough di�erential

reproductive success to a�ect the genetic pool of the population. If a behavior's

usefulness is limited to a local portion of the environment, evolution can hardwire

such behavior into the genotype only at the cost of producing behaviors that are

maladaptive in other parts of the environment.

Along the time axis, the age of mature individuals is a lower bound for the

time scale of evolutionary changes. This is how frequently, on average, selected

individuals carry information across generations. Tracking faster environmental

changes at the genetic level is only possible for species with accordingly short

developmental periods. The consequences are bounds on the complexity of mature

individuals, giving rise to limitations of adaptability to complex environments.

A single individual has access to local information about the environment

that is not available at the population level. The capability to become adapted

to such local features through individual plasticity, or learning, complements the

limitations of evolution outlined above.4 Learning can increase an individual's

survival chances by adjusting behaviors and strategies in a manner that may not

be appropriate elsewhere in the environment, or at other times. Spatial correla-

tions between �tness and behaviors may be too short-ranged to be detectable at

the coarse grain of populations. Individuals are capable of sampling regularities

of the environment that disappear at the scale of the average distance between

individuals, but are crucial to the survival of the individual due to its limited

speed.

Temporal locality is just as important: individuals may be capable of

adjusting to environmental conditions characteristic of the particular time (hour,

season, age) in which they are constrained by their limited lifetime. Remembering

4If such phenotypic changes are not to be transmitted to o�spring, they can be accomplished
without the complications involved by reverse transcription into the genotype. The issue of
Lamarckian versus non-Lamarckian inheritance, although extremely intriguing, is out of the
scope of this thesis. For a discussion see [62].
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recent history can assist adaptation to a changing environment in a way impossible

from observations at the longer time scale of generations [190].

Locality is de�ned above with respect to the dynamic interactions be-

tween agents and environment. Therefore the important space and time scales

are de�ned by the many constraints of these interactions: limited lifespan, lim-

ited velocity, limited sensory discrimination, size of environmental patches, auto-

and cross-correlation distances of important environmental signals, etc. We should

point out there are other dimensions in which we can de�ne locality as well. An

important one is genetic space; genetic and physical spaces constrain each other

in the adaptive process, through the mediation of sensory systems and behaviors

[84]. Niche size and resource abundance are crucial in determining carrying ca-

pacity and thus population dynamics, which in turn a�ect genetic diversity and

adaptability. Conversely, the genetic pool determines the availability of muta-

tions which may a�ect the capability to move and thus alter spatial relationships,

for example changing the e�ective size of the environment or making alternative

resources available.

As mentioned above, one of the reasons for looking at local selection as

a condition for evolutionary internalization is the observation that local selection

is actually the natural extension of adaptation by reinforcement learning from the

level of individuals to that of populations. As reinforcement learning allows an

individual to adapt to its environment within its lifetime, and internalize those

regularities of the environment that are both observable and useful at that time

scale, so local selection allows a population to do the same on evolutionary time

scales. And as reproduction (or death) may be too delayed a reinforcement signal

for behaviors whose adaptive value is of importance within a lifetime, so short-term

e�ects of interactions with the environment may be too volatile to determine the

evolutionary �tness of a population.

In this view, evolution and learning become two well-integrated parts

of the same adaptive process in models where both population and individuals
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adapt, and we refer to them as reinforcement learning and reinforcement evolu-

tion. Evolution takes the �tness measures used for selection without imposing a

global optimum; only individuals sharing common local resources compete against

each other, so that evolution preserves the usefulness of what is learned by lo-

cal interactions with the environment. In turn, learning can reinforce behaviors

that help an individual to compete with those who share its local resources. Both

evolution and learning are thus mediated by the environment, their e�ects being

coupled as a result. The integration of evolutionary algorithms based on local

selection with reinforcement learning algorithms based on internalization of envi-

ronmental cues seems appropriate for problem domains in which performance is

measured with respect to the interactions between situated agents and their com-

plex environments. We attempt to characterize such a class of problems in the

next section.

II.E Problem domains

What are the features of a problem that make it amenable to local se-

lection algorithms? What conditions must be met in order for local selection

algorithms to be applicable? Addressing these questions is the goal of this section.

LS algorithms can be used whenever the �tness function is evaluated by

an external environment, in the sense that the environment provides appropriate

data structures for maintaining shared resources correlated with �tness. Consider,

for example, evaluating a robot in a physical environment: the environment itself

holds information about its state. The robot prompts for some of this information

through its sensors; storing such information would be by far less e�cient than

simply prompting for the same information again as needed. If the robot holds

some �nite memory, it can choose which important information to store | e.g.,

most recent events. But for an agent, or even a distributed population of agents, it

would be simply impossible to store all relevant observations about a distributed,
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dynamic environment.

The environment therefore can take the role of a data structure, to be

queried inexpensively for current environmental state. Of course, this is not the

case for any adaptation problem. For example, classic applications of GAs such as

function optimization have an obviously de�ned exogenous �tness function that is

static and may be expensive to evaluate. No environment can do the job: the shape

of the solution space must be determined by the state of the agent or population

of agents. Such information is not needed for solving the problem in di�erent

conditions (positions or times); rather, it only matters inasmuch as it helps to

determine the one global optimum. Local selection would actually hinder this

process.

When the problem makes the adoption of LS schemes suitable for situated

agents, however, multiple bene�ts may follow. In the framework of evolutionary

computation, the case of distributed populations of agents situated in an environ-

ment corresponds to multimodal �tness. As we have seen in Section II.A.1, existing

GA approaches to multimodal optimization, such as �tness sharing, are ine�cient;

the time complexity of �tness evaluation and selection is quadratic in the popu-

lation size, and lower bounds on population sizes for preventing convergence are

super-linear in the complexity of the �tness function. With local selection, instead,

the population size self-adjusts to the complexity of the adaptive landscape with-

out any prior knowledge of �tness characteristics; evaluation and selection can be

carried out in time linear in the population size; and additional speedup can be

obtained by parallel/distributed implementations.

II.E.1 Graph search

Let us �rst outline a number of experiments pointing to the feasibility and

performance of local selection and internalization for an abstracted class of graph

environments. The problem can be broadly described as searching large graphs in

sublinear time. Imagine a very large graph, where each node is associated with
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some payo�. The population of agents visits the graph as agents traverse its edges.

The goal is to maximize the collective payo� of visited nodes, given that there is

only time to visit a fraction of the nodes in the graph. The framework is well

studied theoretically in the case of random-walkers. The problem of �nding the

optimal path to an unknown node in a weighted graph is NP-complete [82]. Agents

can do no better than heuristically searching on-line through the graph.

The problem is interesting because typically the graph is distributed,

so that agents are charged costs for using its resources, e.g., traversing edges and

evaluating nodes' payo�. The issue of distributed algorithms is therefore central for

this problem class. Furthermore, the graph search task is general enough that it can

be reduced to several interesting special cases. If we use nodes to model hypertext

documents, edges for hyperlinks, and payo� for some measure of relevance, then

the problem is that of networked information retrieval; we can explore di�erent

search strategies in simulated information environments, given a model of relevance

[179]. We will in fact return to this characterization of the problem in Chapter

IV. Alternatively, the graph could be used to model a 2-dimensional environment

in which agents have to sense their position and move to reach some goal. This

would be a typical task for situated robots.

In our instances of the graph search task, each node is assigned a payo� p

from a uniform probability distribution in the unit interval. Furthermore, each link

l is annotated with a \feature vector" with Nf real components f
l
1; : : : ; f

l
Nf
2 [0; 1].

The idea is that these features, if properly interpreted, can guide agents by allowing

them to predict the payo� of a node based on the features of a link pointing to

that node.

To make this possible, each agent's genotype comprises a single-layer

neural net or perceptron, i.e., a vector of weights w1; : : : ; wNf+1 2 <. An agent

receives in input, for each outgoing link from the node where it is currently situated,

the link's feature vector (step (1) of the algorithm in Figure II.1). It then uses its
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Figure II.3: Schematic representation of an agent's behavior in the graph search

problem.
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Figure II.4: Graphical interface of the graph search simulator.

neural net to compute

o(l) =
1

1 + e
�

�
wNf+1+

PNf
i=1

wif li

� ;

i.e., its prediction of the payo� p(l) of the node that l points to. The situation is

illustrated in Figure II.3. Finally (step (2)) the agent follows a link that is picked

by a stochastic selector among the links from the current node, with probability

distribution

Pr[l] =
e�o(l)P

l02node e�o(l
0)

where the � parameter is a component of the agent's genotype describing the

importance attributed to link predictions.

There exists by construction an optimal weight vector such that the cor-

responding neural net predicts payo� within accuracy A (a parameter). Agents

with such a genotype can follow the best links and thus achieve optimal �tness

(maximum payo� intake). The energetic bene�t of an action is the payo� of the

newly visited node, provided it had not been previously visited by any agent (step
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G = 5/15
H = 2
R = 3/6
    = 2/4

Figure II.5: The major parameters of arti�cially constructed search graphs.

(3); nodes are \marked" to keep track of used resources). The environment is not

replenished; a node yields energy only once. A constant energy cost is charged for

any new node visited. A smaller cost is also charged for previously visited nodes,

to prevent endless paths through visited nodes. At reproduction (step (5)), an

agent's genotype is cloned and mutated to obtain the o�spring genotype. Both �

and some of the weights are mutated by additive uniform noise (with the constraint

� � 0). To study the e�ect of local selection in isolation from other factors, no

recombination operator is applied.

Figure II.4 shows an early graphical user interface of the graph search

simulator. This allows one to generate random graphs at run-time, with topology

built in accordance to a number of user-speci�ed parameters. We will focus in

particular on the following parameterizations (cf. Chapter IV):

accuracy A = 1� noise, where noise is the minimum achievable error in payo�

prediction
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generality G equals the density of \relevant" nodes, i.e. those whose payo� is

above some threshold (cf. carrying capacity in Section II.B)5

multimodality H is the number of clusters in which relevant nodes are grouped,

each with a distinct optimal weight vector; the irrelevant background has yet

another optimal weight vector

autocorrelation R is de�ned as the conditional probability that a relevant node

is linked to other nodes in the same cluster (R � G; cf. relevance autocorre-

lation in Chapter IV)

These parameters are illustrated in the example of Figure II.5. Unless otherwise

stated, the graphs constructed for the experiments described in this section have

N = 1000 nodes, an average fan-out of 5, and Nf = 16 features constructed with

an accuracy A = 0:99.

LS vs. breadth-�rst-search

The �rst experiment is aimed at comparing the basic local selection algo-

rithm with breadth-�rst-search, as a baseline graph search algorithm. The latter

is a typical exhaustive search algorithm that will visit every node (and thus all the

good ones) in time �(N). Yet, in realistic graphs such as the Web, N may be too

large for an exhaustive search. The goal is then to �nd as many relevant nodes as

possible in time� N , and this is the basis of our comparison.

Breadth-�rst-search can also be viewed as a sort of local algorithm, in

the sense that new nodes are always visited by following edges from previously

visited ones. However, the search cannot focus adaptively on promising areas and

therefore remains uniformly shallow.6 While we expect any local search algorithm

to take advantage of topological features such as autocorrelation, we expect that

the adaptive character of LS algorithms will optimally exploit such local structure.

5The term is borrowed from information retrieval[157].

6Depth-�rst-search would su�er from the analogous problem of remaining uniformly narrow.
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Since breadth-�rst-search is not an adaptive algorithm, we are only in-

terested here in exploring the search bias of LS as compared to the \blind" search

order of breadth-�rst-search. To this end, in this experiment we do away with

the neural net part of the agent representation. Instead we assume that an agent

receives in input the link estimates directly, and uses the stochastic selector to

decide which link to follow. The behavior is completely speci�ed by the value of

the � gene. � = 0 means that the agent considers the estimates as noise and picks

a random link with uniform probability; high � basically implements a localized

best-�rst-search.

The way that individual agents' search strategies adapt in the LS algo-

rithms is by selective reproduction and mutation of �:

�offspring  �parent +��

where �� in this experiment is drawn from a uniform distribution in [��parent;+�parent].

Evolutionary adaptation cannot, however, capture regularities over portions of the

environment whose scale is signi�cantly smaller than the distance traveled over a

lifetime. For this reason, learning could be considered just as crucial a mechanism

for adapting individual strategies to cope with environmental variations (step (4)

in Figure II.1). One possibility would be to use the sign of the change in energy

following an action as a reward/penalty signal, as in:

�  � +��

�� =

8><
>:

�+� if �E � 0

���� otherwise

where 0 � �+; �� � 1 are small learning rates. In this experiment no reinforcement

learning will be used; in the LS case � will adapt by mutations alone.

Since we are modeling a distributed environment, i.e., a domain in which

there is a cost associated in accessing information about the search space, we can

assume that search algorithms will keep such expensive information in their own

data structures to avoid duplicate tolls. For example, caches are normally used to
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limit bandwidth waste in accessing documents over the Web. We model this by

assuming that both LS and other search algorithms used for comparison employ

such caches. Therefore we consider the number of new nodes visited (for the �rst

time) as our measure of time.

Figure II.6 shows a comparison between breadth-�rst-search and LS in

three random graphs. We explore the implications of di�erent models of informa-

tion structure and link estimation accuracy (modeled by R and A, respectively) for

evolutionary adaptation. For the top experiment only the information structure

counts (R = 0:75), the link estimates being essentially noise. Evolving � values

are of no consequence. The recall-time plots agree with the prediction that the

information structure (high R) is a su�cient condition for LS to outperform non-

adaptive algorithms. In the middle experiment the situation is reversed: there is

no information structure in the graph, but the links provide useful hints for the

agents. These can be exploited by strategies with evolving � values. The plots

show that this environment provides LS with cues that are su�cient to secure

an even better performance. Finally, the bottom experiment attempts to model

a more realistic situation in which the information is somewhat structured (less

than in the top experiment) and the link estimates are somewhat reliable (less

than in the middle experiment). Once again, LS signi�cantly outperform breadth-

�rst-search. Figure II.6 does not show the case of graphs with neither information

structure (R = G) nor link accuracy (A = 0). Predictably, the performance of LS

in these conditions is no better than that of breadth-�rst-search.

LS vs. global selection

We have then used the graph environments to compare local and global

selection [123]. Binary deterministic tournament selection was chosen as the global

scheme for the comparison because of its steady-state nature. Step (5) of the algo-

rithm in Figure II.1 is modi�ed for tournament selection by using the energy level

of a randomly chosen member of the population in place of both � for reproduction
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Figure II.6: LS performance versus breadth-�rst-search (BFS) on three random

graphs with hfan-outi = 10, and G = 0:05. The LS algorithms is marked \ARACH-

NID" in the legend after the name of an adaptive retrieval system modeled by

the simulator. In the top experiment R = 0:75 and A = 0; in the middle one,

R = G = 0:05 and A = 0:75; in the bottom experiment, R = A = 0:5. The plots

show recall as a function of the fraction of nodes (documents) visited, out of a

total of 200. Recall, de�ned here as the fraction of relevant nodes that have been

visited, is a measure normally used in information retrieval (cf. Chapter IV).
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G 0.025 0.05 0.1 0.2
R 0.2 0.4 0.6 0.8
H 1 2 4 8

Table II.2: Parameterizations of the graph search problem.

and ! for death.

The algorithm is stopped when 50% of the nodes have been visited. Figure

II.7 illustrates the di�erence in performance typically observed between the two

selection schemes for eight example graphs. The recall level (fraction of relevant

nodes visited so far) is plotted as a function of time (fraction of all nodes visited

so far). Local selection populations continue to discover a constant rate of good

nodes, while tournament populations tend to converge prematurely. Notice that

for R = G (top right graph), the graph topology is not informative of payo� and

in fact this situation correspond to the worst performance for the local selection

algorithm, which performs only slightly better than a random walk (a random

walker's expected recall would be equal to the fraction of nodes visited).

The same experiment was repeated 64 times, over a wide range of graph

parameters, shown in Table II.2. Across all graph parameterizations, local selection

signi�cantly and consistently outperforms tournament selection. The improvement

varies depending on the graph parameters, but is generally between two- and ten-

fold.

Varying G, the density of good nodes, does not result in any noticeable

trend across all other experimental conditions. Figure II.8 shows the base case of

lowest H (unimodal graphs) and R (unstructured graphs). The recall level plotted

is recorded after 500 nodes have been visited.

Increasing R, the correlation among good nodes, is equivalent to increas-

ing the importance of locality; where an agent is situated has greater consequence

in determining how well it will do in the future. We therefore expect local selec-

tion's performance to improve accordingly. Figure II.9 shows the case of unimodal

graphs and intermediate G. We observe that the performance of tournament se-
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Figure II.7: Performance of local selection vs. tournament selection on typical

random graphs with H = 2 and various values of G and R (shown above the

plots). Error bars indicate standard errors across multiple runs with the same

algorithm and graph parameters.
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Figure II.8: Performance of di�erent selection schemes searching graphs with H =

1, R = 0:2, and various values of G.
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Figure II.9: Performance in graphs with H = 1, G = 0:1, and various R values.
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Figure II.10: Performance in graphs with R = 0:8, G = 0:1, and various values of

H.

lection also increases with R, yielding a consistent advantage in favor of local

selection.

Finally, increasing H makes the problem multimodal and therefore we

expect tournament selection to degrade in performance due to premature conver-

gence. Figure II.10 illustrates this trend in the case of high R and intermediate G.

The advantage in favor of local selection increases with H as predicted.

Internalization of global cues

Another important question is, Do agents really become adapted to the

particular environment in which they are situated? I.e., is evolution allowing agents

to detect important features of the information space and adapt their strategies

accordingly? The goal of a third set of experiments was to test the capability of

agents evolving by the local selection algorithm to internalize global environmental

cues [114]. The signal considered was the accuracy of payo� predictions based on
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Figure II.11: Correlation between link prediction accuracy A and evolved � pa-

rameters, averaged over agents in the population. Linear regression is also shown.

link cues, i.e., the potential accuracy of optimally evolved agents. For high A, the

optimal agent strategy is best-�rst-search; for low A, it is random-walk. Thus in-

ternalization of link prediction accuracy implies evolving � values corresponding to

the appropriate strategies as implemented by agents via their stochastic selectors.

We ran ten experiments with graphs having an average fan-out of 10

links, G = 0:1, R = 0:75, and H = 1. Each experiment, consisting of 10 runs,

used a di�erent value of A between 0.1 (very noisy predictions) and 1.0 (perfectly

accurate predictions). In each of these runs, � was initialized with uniform distri-

bution in the range [0; 5] and measured after 750 node accesses. As Figure II.11

shows, the � values evolved by the population were indeed well correlated with

the accuracy of the environmental cues. The positive correlation between A and �

(with a coe�cient of 0.77) indicates that the population successfully internalized

environmental cues about accuracy into its agent behaviors.
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Figure II.12: E�ect of Q-learning on recall performance.

Internalization of local cues

The last experiment with graphs is aimed at testing whether local envi-

ronmental cues can be internalized by reinforcement learning occurring over the

lifetime of individual agents. To this end, we have endowed agents with the capa-

bility to adjust their neural nets by Q-learning (step (4) of the algorithm in Figure

II.1). This algorithm was chosen because it is model-free and easy to implement

within the connectionist framework of the agent representation [96]; agents' neural

nets are naturally used as Q-value function approximators. An agent compares the

payo� of the current node with the prediction based on the features of the link that

was followed to visit the node. Perceptron weights are adjusted by the delta rule to

improve the accuracy of the link predictor. The net instantaneous energy change

(payo� minus cost) is used as reinforcement signal, with future values discounted

by a factor of 0.5. Learned changes to the weights are inherited by o�spring at

reproduction.

We ran two experiments with graphs having N = 10000 nodes, G = 0:25,
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R = 0:5, and H = 1. In the two experiments Q-learning was disabled and enabled,

respectively. Figure II.12 shows that Q-learning yielded a signi�cant improvement

in performance. Agents were able to learn, based on where they are situated, the

appropriate network weights allowing them to correctly predict payo�. Therefore

they could internalize the di�erent local features of the relevant cluster versus the

irrelevant background.

II.E.2 Combinatorial optimization

The second problem domain in which we explore local selection is com-

binatorial optimization. We consider two NP-hard optimization problems, TSP

and SAT. In each case steps (1) and (2) of the algorithm in Figure II.1 reduce to

evaluating a new candidate solution. In order to apply LS, we need to implement

step (3) through some model of environmental resources and energy bene�ts and

costs. We compare the performance of two evolutionary algorithms, with local

and global selection, respectively. As in Section II.E.1, deterministic binary tour-

nament selection is chosen as a representative of global selection schemes mainly

because it does not require global operations such as averaging, and thus it �ts

naturally within the steady-state framework of the algorithm.

Traveling salesman problem

The traveling salesman problem (TSP) is to �nd the shortest tour through

all the nodes in an undirected graph. The length is given by the sum of the weights

of all the edges through the tour. The Euclidean TSP is the special case in which

each node corresponds to a point on the plane, connected by edges to all other

nodes, and the weight of an edge is given by the Euclidean distance between the

two points connected by the edge.

We generate a Euclidean TSP instance by distributing points uniformly

in the unit square. An agent's genotype represents a tour, i.e., a permutation of

the order in which points are to be visited. While no crossover is used, two ad-hoc
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mutation operators are applied: (i) swapping two random points, (ii) reversing the

subtour between two random edges. This operation, called 2-Opt, is a well-known

local search strategy for the TSP [75].

For tournament selection, the tour length is used to compute �tness.

For local selection, edges between points represent the shared resources. Every

time an agent tests a tour, a usage count associated with each traversed edge is

incremented. The agent is then charged an energy cost based on the accumulated

usage counts, and receives an energy bene�t based on how good (short) the tour

is. At replenishment, usage counts are redistributed uniformly across edges and

decreased by a constant amount that determines carrying capacity. This model

resembles the Ant Colony system [40], in which agents deposit pheromone on

used edges; edges are chosen based on both length and amount of pheromone

accumulated by the passage of previous agents. However, the way of associating

resource consumption with solutions in the Ant Colony algorithm is di�erent in

that agents are encouraged to agree upon, rather than diversify, their use of edges.

Figure II.13 illustrates the performance of the two selection schemes. Per-

formance is plotted as percentage excess tour length over the Held-Karp bound.

The latter is an approximate, analytically derived lower bound for Euclidean tours

in the unit square. The plot shows that the comparison between LS and tour-

nament selection performance on the TSP is in clear favor of the global scheme.

Local selection does not seem to apply su�cient selective pressure.

In the run of Figure II.13, agent are initialized with random tours. In an-

other run, we initialized agents with good starting tours using the nearest-neighbor

heuristic, which produces Euclidean tours whose average length is 29.3% above the

Held-Karp lower bound [75]. The results are shown in Figure II.14. LS in this case

signi�cantly outperforms tournament selection; the latter consistently converges

prematurely to less optimal tours.
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Figure II.13: Single-run performance of EAs with local and tournament selection

on a 100-point Euclidean TSP with random initial tours. The performance of a

simple simulated annealing algorithm, with geometric annealing schedule, is also

shown for sake of comparison.
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point Euclidean TSP instances with greedy initial tours.

Satis�ability

For the second combinatorial optimization problem, MAX-3-SAT, we gen-

erate random CNF formulas in which each clause contains 3 literals, and seek

truth assignments that maximize the number of satis�ed clauses. The number of

clauses in the formulas is a multiple of the number of variables, chosen so as to

make the problem maximally di�cult [162]. Individual genotypes contain binary

truth assignments that are randomly initialized. Due to this binary representation,

crossover can be applied in this problem; we use point crossover with panmictic

mating | a parents can be recombined with any other member of the population.

A local search strategy is applied at each step; a random literal is selected from

one of the unsatis�ed clauses and negated. This is an optimal strategy for SAT

[141], and we also use it as a mutation operator with probability 1.

For tournament selection, �tness is simply the fraction of satis�ed clauses.

For LS, the energy cost charged for each evaluation is a constant. The energy
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Figure II.15: Single-run performance of EAs with local and tournament selection

on a 100-variable, 430-clause MAX-3-SAT problem. The performance of a simple

simulated annealing algorithm, with geometric annealing schedule, is also shown

for sake of comparison.
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bene�t, however, depends on the fraction of clauses that are satis�ed by the agent's

truth assignment, and for which there are available resources. Environmental

resources are associated with each clause, and decremented every time an agent

satis�es that clause. At replenishment, all clause resources are incremented by a

constant that determines carrying capacity.

Figure II.15 shows that for SAT with random initial solutions, as for the

TSP, tournament selection performs better than local selection. Again, the latter

does not seem to exercise a su�cient selective pressure.

II.E.3 Remarks

The performance of local selection strategies is related to the tension

between exploration and exploitation, as for evolutionary algorithms in general.

The interplay between these two opposite forces determines the EA's capability

to make progress toward good solutions without prematurely converging to sub-

optimal ones. The appropriate balance, of course, is problem dependent. LS is a

very weak selection scheme, so it ensures better performance in tasks where the

maintenance of diversity within the population is more important than a speedy

convergence to the optimum. This is the case for multimodal optimization and

sublinear graph search, as we have shown. LS does in fact maintain population

diversity at a much higher level than tournament selection.

The maintenance of diversity by local selection is illustrated in Figure

II.16, where population entropy is plotted over time for the two selection schemes

in TSP problems with greedily constructed initial tours. Entropy is computed by

S = �
X
l

fl log(fl)

where fl is the frequency with which edge l is traversed by agents in the current

population. Since all of the tours making up the population are quite good in

these runs, tournament selection exploits the information too quickly, excluding

good solutions and eventually converging prematurely to suboptimal tours.
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Figure II.16: Entropy of population solutions for 1000-point Euclidean TSP in-

stances with greedy initial tours.

On the other hand, exploiting information is also necessary to guarantee

progress. For problems requiring e�ective selection pressure, LS may just be too

weak. This may explain its failure at the NP-hard combinatorial optimization

problems that we have considered. The only selection pressure that LS can apply

comes from the sharing of resources. Therefore the way in which environmental

resources are coupled with the problem space in a particular implementation of LS

is crucial to its success. We have explored a few alternatives for TSP and SAT,

but LS has been consistently outperformed by tournament selection.

Local selection algorithms can be used whenever the environment pro-

vides for appropriate data structures for maintaining the resources associated with

�tness. At a minimum, in order for LS to be feasible, an environment must al-

low for \marking" so that resources may be shared and in �nite quantities. In

the graph search problem, visited nodes are marked so that the same node does

not yield payo� multiple times. If marking is allowed and performed in constant
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time, the time complexity of LS is also O(1) per individual. This is a big win over

�tness sharing, the obvious alternative for distributed or multimodal optimization

(cf. Section II.A.1). Further, in a distributed implementation there is no commu-

nication overhead and thus the parallel speedup can be as large as the number of

agent processes.

However, all problem spaces do not lend themselves to being used as

data structures. For example, a task may have a �tness function that is static and

expensive to evaluate. And for problems such as continuous function optimiza-

tion, marking the environment would imply a discretization of the search space;

arbitrary precision would make LS at least as expensive as �tness sharing.

In applications such as robotics, the marking problem would not arise

because physical state can be \queried" by sensors to provide a situated agent

with history information (e.g., an object was moved, or a resource was consumed).

Software agents, on the other hand, must be provided by their execution envi-

ronment with capabilities such as access to local storage. These capabilities may

require the solution of several system-related problems, such as dynamic resource

management, security, and service payment transactions.

Finally, it may be di�cult to devise an appropriate isomorphism of an

arbitrary problem such that the environmental resource model can be applied suc-

cessfully. For example, associating environmental resources to partial solutions of

a combinatorial optimization problem may require a decomposition property that

the problem is unknown to possess. In the particular TSP and SAT problems where

LS has failed to prove advantageous, it is not clear whether the poor performance

is to be attributed to inadequate resource models or to weak selection pressure.

More experiments might shed light on this issue and help us better characterize

the problem domains in which local selection is feasible and successful.



Chapter III

Latent Energy Environments

Evolutionary theory and ecological theory are rich in data and analytical

models, and in recent years have increasingly taken advantage of the modeling tools

made available by computational methodologies. Such tools provide new opportu-

nities, through numerical simulation, for dealing with systems whose complexity

is too great to be captured by common mathematical tools, such as systems of

di�erential equations. In this chapter we study evolutionary and ecological models

of natural adaptive systems based on local selection and internalization.

III.A Background: Issues and models

The work reported in this chapter relates to several previous attempts

to characterize the role of environmental complexity in guiding the evolution of

adaptive behaviors. General modeling tools aimed at explaining the behaviors of

natural populations interacting in real environments are often limited in one of

two respects. Analytical models are rigorous, but may be too simplistic to capture

the complexities of the interactions they are meant to describe. Simulation tools

are often broad in scope, but too convoluted to allow for formal analysis. In this

section we review di�erent aspects of such models, both analytical and numerical,

with respect to a number of open issues in evolutionary and ecological theory.

54
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III.A.1 Arti�cial life

Roughgarden et al. [151] have discussed the role and usefulness of com-

puter simulations in biological theory. They identify two classes of minimal models

in which the contribution of computer simulation can be most e�ective and rel-

evant for biologists. Idea models need not possess the plausibility of a biological

theory; they only need to point to the possibility of a certain idea, which can in

turn inspire biologists to devise experiments in the �eld to test for more formal hy-

potheses. Minimal system models, though still very simple, are more plausible and

aim to provide an explanation for some observed phenomenon; their assumptions

and consequences must be testable in the �eld, so that cooperation with biologists

is more essential.

Several open questions lend themselves to be studied via minimal models

using computer simulations. We want to list some of them for which we believe

that local selection models, because of their non-optimizing selection pressure, can

become useful tools of analysis and interpretation of the biological data. Many

questions revolve around the interactions between learning and evolution: How do

the genotype and the environment interact to produce the phenotype? How does

this interaction a�ect evolution? What determines the degree of learning versus

genetic determination involved in the development of a trait, with respect to en-

vironmental variability? How does learning a�ect the population-genetic selection

on a trait, altering its evolution?

Computational models from the arti�cial life community have already

been applied to some of these problems: for example Hinton and Nowlan [66] have

proposed a well-known idea model to explain the Baldwin e�ect, by which learning

can inuence evolution. Many other researchers have used simulation tools to build

idea models that address related issues [2, 78, 77, 97]. The evolution of metabolism

as a self-sustained, adaptive, complex chemical system is another fascinating open

problem that has been studied with arti�cial life models [148, 5, 81].
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III.A.2 Environment

A di�erent set of issues, closer to the interests of ecologists, has also been

the target of many interdisciplinary studies by arti�cial life practitioners: the re-

lationship and interplay between environmental complexity and the emergence of

adaptive behaviors. Levin et al. [90] point out that there is a need for compu-

tational models to deal with the collective dynamics of heterogeneous ensembles

of individuals, especially with respect to the ways in which their interactions with

the environment scale from small to large spatial regions.

Genetic algorithm modelers have generally assumed a fairly direct corre-

spondence between the genotypic data structure manipulated by genetic operators

(mutation, crossover, etc.) and the phenotype's �tness (i.e., number of o�spring),

downplaying the role of the environment in determining such �tness. But the ap-

propriateness of phenotypic behaviors is obviously conditional upon environmental

context, and the de�nition of \adaptive" behavioral features must therefore depend

on a complex interplay of genetic and environmental circumstances.

What is the role of space in shaping the selective pressures leading to

adapted individuals? How can we compare the e�ciency of behaviors in di�erent

(natural or arti�cial) environments? How can we characterize di�erent environ-

ments in such a way as to predict what types of behavior would be optimal or

even appropriate? Can adaptive algorithms lead an animal to behave (forage,

choose habitat) optimally, as predicted by optimal foraging theory? How does

an animal learn behavioral interactions such as where to make its home or how to

court another? How can interactive signaling inuence learning, truth in signaling,

and cooperative equilibria? What determines the size of a social colony or other

complex societies? To what degree can we model (intra-species or inter-species) in-

teractions among individuals in terms of environmental interactions? What are the

limits in the temporal scales of environmental dynamics within which populations

can adapt?

Several models have been put forth to begin to address these issues. Echo
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[68, 69, 78] is a notable example; it is a class of models that attempts to be inclu-

sive with respect to the many di�erent levels of interactions that can exist between

agent and environmental resources, between di�erent (cooperating or competing)

agents within same species, and between agents of di�erent (cooperating or com-

peting) species.

Sugarscape [42] is a model aimed at the development of a \bottom up"

social science. It simulates the behavior of agents located on a landscape of a gen-

eralized resource (sugar). A remarkable range of social phenomena, such as group

formation, cultural transmission, combat, and trade are seen to \emerge" from the

interactions of individual agents following simple local resource-approaching rules.

Many other simulations models have been proposed to address more or less speci�c

questions in this domain [185, 175, 176, 12, 151, 10, 177, 47, 46].

In the following sections of this chapter we describe an arti�cial life frame-

work within which both minimal system and idea models can be designed easily

to explore the classes of evolutionary and ecological question mentioned above.

III.A.3 Ecology

Local selection and more generally endogenous �tness [133] are di�erent

aspects that we consider key to modeling populations adapting to an environment

| as opposed to explicitly optimizing some predetermined trait. A general reason

behind this belief comes from a common criticism of genetic algorithms made by

evolutionary biologists. It is pointed out that in nature we often observe \sub-

optimal" adaptation while GAs are more suitable to perform optimization. Gould

and Lewontin [57], for example, assume a priori that evolved behaviors are not

optimal. Less extreme criticisms of optimality are better supported by experimen-

tal observations; for example, apparently optimal behaviors for the individual can

lead to resource depletion and extinction of the group under density dependence

of �tness [24]. A robust model of group selection has been proposed to account

for the evolution of traits that are sub-optimal from the point of view of indi-
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vidual selection [51]. While we don't deny the usefulness of optimality analysis,

we propose that local selection, eliminating the global mechanism responsible for

the optimizing behavior of standard GAs, may allow our computational models to

approach the richness and complexity of population biology.

In evolutionary biology, since the classic works of Fisher on populations

(e.g., [45]), models of selection have mirrored the role of the environment on selec-

tive pressures and population dynamics. Two general classes of models are used

commonly for �tness and selection, while evolutionary computation methods until

recently seem to have been inspired only by one of them. Biologists instead can

point to the environmental conditions that make one or the other class of models

better suited for capturing realistic mechanisms of adaptation.

When environmental resources are abundant, or their exploitation is so

poor that increases in e�ciency make the resources appear as though they were

in�nite with respect to an existing population, it is possible to optimize resource

usage without apparent bounds. These conditions lead to an exponential growth

in population, and successful individuals become dominant in proportion to their

reproduction rate. The population grows geometrically over time:

p = p0e
rt

where p0 is the initial population size. The intrinsic rate of population increase,

r, is therefore used as �tness. This is appropriate for expanding populations, with

negligible crowding, where density has no inuence on birth and death rates. A

�tting example is the situation in which death rates are driven by seasonal climate

changes [91]. This model is referred to as geometric growth or r-selection.

The situation is fundamentally di�erent when the usage of resources by

the population is at a level near the bounds imposed by the environmental replen-

ishment rate. In these cases the carrying capacity of the environment, K, can be

used as �tness:

p =
K

1 + (K
p0
� 1)e�rt

:
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This is appropriate for crowded populations in which individuals must compete

for �nite resources. This model is called K-selection. Fitness is said to be density

dependent when individuals do not have much interaction other than by sharing

resources, and selective pressure is proportional to the density (or size, assuming

�xed territory) of the population.

Roughgarden [150] showed that r- and K-selection need not use di�erent

�tness de�nitions. In fact, using Sewall Wright's selective value [189] as a universal

�tness measure, both types of selection follow. Evolution in either case favors

genes producing phenotypes with the highest �tness. Depending on the harshness

of environmental conditions and on population crowding, either of the two extreme

selection/�tness models may be appropriate, as well as a stable coexistence between

them.1

We can easily notice the correspondence between the models of selection

used in evolutionary biology and evolutionary computation. The �tness of classic

genetic algorithms corresponds to r-selection. For example, this is the basis of

Holland's initial argument in support of GAs (the schemata theorem [67]) and of

much of the later work analyzing the behavior and performance of GAs. The limit

of �nite resources imposed on computational models by �nite computer memory

and time (hence �nite populations) is also the limit of these analyses, that con-

sequently treat genetic drift as a sort of \sampling error" rather than a �rst-class

mechanism of evolutionary pressure.

We conclude that when standard GAs have been used as computational

models of biological adaptation, they have only captured one class of environmental

conditions | namely, unbounded resources. On the other hand, biologists have

long studied analytical models of broader classes of natural selection mechanisms,

including density dependent selection [102].

Recent computational models of adaptive populations have reduced the

1Both r- and K-selection models are further complicated by direct interactions among individ-
uals, e.g., communication. But in the present discussion we limit our observations to the simpler
case in which selection is the only | or main | form of interaction.
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gap with biological models and increasingly made use of �tness measures de�ned

in biology to characterize the role of the environment in their simulations. Well-

known models focusing on adaptation to the environment rather than optimization

include Echo [68] and ERL [2] among others. The SPO model [175, 177] considers

reproductive behaviors that make selection more a matter of individual \choice"

than a response to metabolic/energy considerations. Endogenous �tness and local

selection have introduced the ideas of open-ended adaptation and density depen-

dence into models based on evolutionary computation algorithms [133, 123]. In

short, arti�cial life's growing interest in simulation of evolution's creative, open-

ended aspects can draw on a growing body of literature for mathematical and

computational analyses of the behavior [22].

III.A.4 Space

Spatial features of the environment have been identi�ed long ago as cru-

cial in characterizing environmental complexity for both natural and arti�cial sys-

tems [150, 149]. Ecologists recognize the importance of spatial models, in which

relationships between members of a population and their environmental resources

are mediated by the distribution of such resources in space [131]. They point

out the lack of studies on how to relate phenomena across scales [90]. Ideal free

distributions, critical patch size, habitat variability, food gradients, metapopula-

tions and niche adaptation are all examples of important spatial aspects of the

environment [152, 50].

Characterizing the ecological consequences of physical constraints in ar-

ti�cial and natural environments is an active area of research. The e�ects of

geographic structure on populations have been studied extensively in theoretical

biology since the theory of demic selection and shifting balance [188]. Such e�ects

shed light on the genetic dynamics of populations evolving in space, thus indicating

ways to improve the performance of GAs through niching [110].

However, there is a lack of models that account for the potential inu-
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ences of space on ecological dynamics. Environmental consequences of the spa-

tial dimension are often treated by adding ad-hoc variables into partial di�erential

equation models. Recently, theoretical explorations of spatial e�ects have involved,

among others, models of dispersal, habitat fragmentation, patch turnover, reaction-

di�usion, and cellular automata [80, 160, 173]. Yet, experimental investigations to

test the major hypotheses emerging from such models remain missing because �eld

studies are di�cult, expensive, or time-consuming. Simulations can assist in this

regard. The EcoBeaker program, for example, lets users explore spatially explicit

ecological models on the Macintosh [111].

III.B LEE overview

The acronym \LEE" stands for Latent Energy Environments. LEE is an

arti�cial life modeling framework and is described in this section. The name refers

to the fact that in LEE, survival is determined by an agent's capability to realize

the energy latent in the environment, by detecting and appropriately combining

the resources present in the environment.

III.B.1 Motivation

Adaptation of ecological systems to their environments is often viewed

through some explicit �tness function de�ned a priori by the experimenter, or

measured a posteriori by estimations based on population size and/or reproduc-

tive rates. These approaches have been used in the �eld as well as in computational

methods. In the former case, evolutionary ecologists must choose some measurable

trait to monitor and characterize the individuals in a population, perhaps �nding

which traits are best correlated with established measures of �tness such as re-

productive rate or success, or environmental carrying capacity. Analogously, the

modeler of an arti�cial life experiment has to de�ne how to map some phenotypic

trait, be it somatic or behavioral, to a mechanism of o�spring allocation, through
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some �tness function and selection scheme.

These methods have the merits of having allowed for enormous advances

in understanding the dynamics of ecological systems, and having enlarged the set of

tools at the disposal of ecological theory from purely analytical mathematics (such

as di�erential equations) to explorative idea and system models (such as computer

simulations). However, the relationship between adaptive population and environ-

ment continues to look like a \black box" function mapping phenotypic traits to

reproductive �tness. It is di�cult, in the �eld, to re�ne the black box to the point

of characterizing the way in which the environment shapes the selective pressures

acting simultaneously on each trait while possibly interfering with each other. The

analytical tools commonly used by the theorist rapidly become intractable as the

spatio-temporal dynamics of the environment become even moderately complex.

Are we then hopeless in the face of the problem of characterizing the in-

teractions between complex environments and adaptive populations? This chapter

suggests that modeling techniques developed in the arti�cial life community may

play an important part in re�ning the role of the environment in the adaptive

process. Genetic algorithms have been used as computational models of evolution

in a great many simulations of adapting populations. Since we want to focus on

the role of the environment, we will consider variations of evolutionary algorithms

in which local interactions between agents and the environment guide the adaptive

process. In particular, we will pay special attention to local selection (cf. Chapter

II) in order to study the e�ects of localizing the main global aspect of the classic

genetic algorithm, i.e., selection.

III.B.2 Environmental complexity

Even disregarding issues of biological plausibility, the arti�cial life cou-

pling of organisms with environments brings with it a major methodological prob-

lem: results reporting behaviors of di�erent organisms in di�erent environments

are incommensurate. It is therefore di�cult to assess whether an apparently su-
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perior behavior is the consequence of more sophisticated adaptive techniques, or

is due to the relative complexity of the environments. It is very desirable to be

able to de�ne arti�cial environments of controlled complexity, within which a wide

range of arti�cial life techniques might be directly compared.

Godfrey-Smith [52] provides us with a very good starting point for the

de�nition of both environmental and behavioral complexity, equating complexity

with heterogeneity. This useful simpli�cation allows environments to be charac-

terized in terms of the number of distinct states they present to an organism, the

frequency at which these change, etc. But while Godfrey-Smith abstracts away

from speci�c properties of organization, we want to ground our notion of complex-

ity on observable measures of environmental organization.

There have been several attempts to de�ne generic conditions on environ-

mental complexity that are analytically tractable without constraining evolution's

creative potential. R�ossler [149] proposed food density as a simple complexity

metric for the environment facing an organism. Even a random walk may be an

adequate foraging technique if food is abundant, but as environments become more

scarce, more coherent movement is required and the foraging organism may need to

depend on landmarks, cognitive maps, etc. [187]. Food density is clearly a useful

dimension for arti�cial life simulation, but this single dimension of environmental

variability must be extended to include other factors if we are to be able to test

the full repertoire of arti�cial life models.

Latent Energy Environments are a modest step from the single dimension

of food density towards richer models. To accomplish a useful measure of envi-

ronmental complexity without compromising analytical tractability, we extend the

standard model of \food" as a spatially localized element of the environment, re-

quired for survival. Food is replaced in LEE with a series of inert environmental

\atomic elements" that must be combined by organisms in order to realize the

energy they require for survival. Consider a simple discrete world with cells placed

on a two-dimensional grid. Let the only source of (positive or negative) energy be
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via binary reactions; i.e., combining two elements results in an energy gain or loss,

and possibly other by-product element(s). Let the base elements belong to an arti-

�cial set of types fA1; :::; Atg. Furthermore, let elements of each of these types be

generated (or replenished) according to some spatio-temporal distribution. All the

possible reactions can be represented by a symmetric matrix of reactions indexed

by element types:

Ai + Aj �! Eij + Pij: (III.1)

A reaction occurs when two reactive elements come into contact.2 A re-

action can only happen when an individual catalyzes it, since reactive elements

never occupy the same cell. In the example III.1, two generic elements Ai and Aj

yield energy Eij 2 < (Eij > 0 for exothermic reactions, Eij < 0 for endothermic

ones) and a list of by-product elements indicated by Pij. The reaction matrix and

the spatio-temporal distributions of elements together represent the laws of physics

and chemistry regulating the interactions between an individual and its environ-

ment and among individuals, since the environment of an individual includes the

rest of the population. In short, the matrix of reactions and the distributions of

elements are the parts of the LEE model which characterize the environment.

We now need some de�nitions. For any world con�guration, there may

be many possible combinations of existing elements according to the possible re-

actions in the matrix. After one of these reactions takes place, two elements are

consumed and some new elements (by-products) may appear, giving rise to a new

con�guration. We can think of this process as a decision tree, where each reaction

leads to a new node down the tree, and a path along the tree represents a reac-

tion chain. Eventually, the chain terminates if no possible reactions exist among

the remaining elements: a leaf is reached in the tree. Every reaction chain has a

corresponding potential energy, given by the arithmetic sum of energies released

and/or absorbed by the reactions along the path. For each world con�guration, we

2Not all elements need be reactive: an empty entry in the reaction matrix indicates non-
reactive elements.
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call latent energy the set of potential energies corresponding to all reaction chains

starting from that node. The energy remains latent until it is realized as poten-

tial energy by choosing a particular reaction chain. By specifying the interaction

energies in the matrix and controlling the rates at which elements of each type

are introduced, the amount of energy available in its latent form can be precisely

regulated.

Recall now that a collection of the various elements is distributed across

the two-dimensional space of the LEE world, and de�ne the work required to release

latent energy associated with a pair of elements to be the distance one element must

be moved in order to occupy the cell of the other. Then, by controlling the spatial

distributions of elements in the world, we can dynamically regulate the amount of

work required to combine them.

The next step is to introduce organisms into this abiotic environment, by

considering their ability to move through the environment and mix its elements as

their most fundamental behaviors. We also endow the basic LEE individual with an

internal body cavity (gut) and assume ingestion of an element into this gut occurs

any time an organism occupies a cell containing one. An element consumed in this

fashion is then carried with the organism as it moves. Organisms therefore become

the agents actively mixing the otherwise static elements of the LEE environment.

In the experiments reported in this chapter, individuals incur constant

metabolic costs simply for being alive. That is, there is no additional energy cost

for moving (as opposed to remaining in one cell of the environment) or for carrying

elements. The work associated with a pair of elements, based on the Euclidean

distance between them in the environment, therefore becomes a lower bound on

the energy cost an e�cient individual would incur in moving to realize their latent

energy.

Subtracting work from latent energy and summing over all pairs of ele-

ments in the environment, we can estimate optimal energy e�ciencies, and from

this the maximum carrying capacity of an environment. In short, by controlling
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how much latent energy is available and how much work must be done in order to

realize this energy, we can obtain a quantitative measure of how di�cult it is for

an organism (or ecology of organisms) to survive.

The above de�nitions | latent energy, work, carrying capacity | allow us

to control parameters of the environment without specifying just how latent energy

is to be realized by one or more species. The monitoring of population dynamics

makes it possible to compare ecologies in di�erent environments, in terms of how

e�ciently each exploits the energy latent in its own environment. In a single shared

environment, competition for the �nite resources intrinsically de�nes the ground

on which adaptive success can be gauged.

The simple models of metabolism and environment | achieved by the

range of available reactions and by the spatio-temporal distribution of resources,

respectively | provide a space in which to explore the e�ects of discoveries due to

more or less complex and e�cient exploitations of the energy available in its latent

form. The principle of energy conservation and the �xed physics permit us to do

so without sacri�cing analytical tractability. Energy is conserved in this system

because we can always verify that incoming energy (from resource replenishment)

equals outgoing energy (from work) plus changes in the latent energy of the en-

vironment. The physical laws of the system are �xed because they are embodied

by the set of available reactions, and these cannot change during an experiment

| unless the experimenter uses changes in the reaction matrix to model dynamic

aspects of the environment.

III.B.3 Algorithm

The evolutionary process is modeled in LEE by the steady-state, local

selection algorithm of Figure II.1. The algorithm is reproduced in Figure III.1, for

ease of reference and with more details about the speci�c LEE model. As discussed

in Chapter II, one important consequence of this model is that the population size

does not remain constant throughout an experiment, and extinction is possible. We
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initialize population of agents, each with energy �
2

while there are alive agents

for each agent i

1. input: gather information from sensors

2. output: use motors to move to new positions

3. update energy:

ingest atoms

catalyze reaction(s)

Ei  Ei +E(catalyzed reaction(s))� cost

4. optional learning

5. selection:

if (Ei > �)

clone(i)

mutate genotype(offspring)

develop phenotype(offspring)

Eoffspring  
Ei

2

Ei  
Ei

2

else if (Ei � 0)

die(i)

end

end

replenish environment

end

Figure III.1: Pseudocode of LEE local selection algorithm.

show in Section III.C that the population size becomes stable spontaneously and

robustly when the environmental conditions allow it, without this being imposed

externally.

Environmental energy represents the endogenous �tness by which indi-

viduals survive and are locally selected for reproduction. Energy in a latent energy

environment can be released only through the behaviors of organisms. Behaviors

induce reaction sequences, thus catalyzing the transformation of latent energy into

usable energy. The notion of behavior | actions taken by the organism that

change the world and/or the organism's relationship to the world | immediately

binds an organism to its environment in an intrinsic way. The complexity of an

environment, de�ned by its physics, must be matched by the population in order

to avoid extinction.
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A behavior is de�ned by a function mapping input corresponding to the

organism's stimuli to output controlling its actions. Input (step (1) of the al-

gorithm) comes from a set of genetically-speci�ed sensors, and output (step (2))

drives a set of genetically-speci�ed motors. The behavioral map is implemented in

LEE by a feed-forward neural network representing the organism's brain. These

di�erent components of an agent's representation are illustrated in Section III.B.4.

The reactions(s) catalyzed by an agent result in energy losses or gains

(step (3)) that can be used to guide learning during its lifetime (step (4)). Learning

only a�ects the phenotype, while it is the genotype that is passed on to o�spring.

At reproduction (step (5)), the genotype of the parent is cloned into that of the

o�spring, and the latter undergoes mutations. Then the o�spring phenotype is

obtained by making a copy of the mutated genotype. This distinction between

genotype and phenotype allows one to consider non-Lamarckian phenotypic plas-

ticity, whereby learned behaviors are not hereditary. This issue is explored in

Section III.E.

In LEE's local selection evolutionary algorithm, adaptation results from

the local competition for the �nite resources in the shared environment. The in-

teractions between individuals and the environment create selective pressures that

can be as diverse as the environmental conditions occurring in di�erent places.

The lack of a constant selective pressure allows individuals to explore the adaptive

landscape without competing with others who are not part of their own local en-

vironment. Since the organisms do not interact other than by sharing resources,

�tness is density dependent. Genetic drift is strong due to the weak selection

pressure of the algorithm, as will become clear in the remainder of this chapter.

III.B.4 Individual representation

In any adaptive model, an individual's behavior is strongly dependent

upon its representation. Each individual in LEE is represented by a body and a

brain. The body comprises sensory and motor apparati, and internal reservoirs
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Figure III.2: The body of a LEE organism. On the left, the organism is displayed

situated and oriented in the environment; in the middle, the body of the organism

is expanded and di�erent possible sensors and motors are shown; on the right,

the architecture of a neural net modeling the organism's brain is illustrated. Not

shown in the �gure, a learning feedback loop can occur either by reinforcement or

sensory prediction.

for energy and environmental resources. The brain consists of a neural network

that models the behavior of the individual given its environmental conditions. The

fact that the individual is embodied makes its interactions with the environment

crucial in determining the degree to which behaviors are well adapted.

Body

The brain interacts with the environment external to the body through

a sensory-motor system. Figure III.2 provides an illustration of an organism's

body structure with a typical sensory-motor system. The body also determines

the placement and orientation of an organism's sensors and motors.

The sensory system is composed of a set of sensors with di�erent charac-
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teristics. These collect information from either the external world or the internal

body of the organism, and map it onto the brain input. Sensors may di�er in

range, directionality, sensitivity, resolution, speci�city, accuracy, etc. Examples of

external sensor types used in the experiments reported in this thesis are contact

and ambient sensors. Contact sensors provide a binary presence/absence indica-

tion of some element (or complex of elements) in the space directly adjacent to

the sensor. They are su�cient to support avoidance behaviors, but not approach.

Ambient sensors signal the presence of some element (or complex), summed over

cells in a neighborhood of the sensor and weighted inversely according to their

distance. Ambient sensors can underlie approaching behavior only if the brain

possesses either a memory to compare temporal di�erences in a single sensor, or

multiple ambient sensors placed and oriented di�erently to compare spatial di�er-

ences. Two examples of sensory con�gurations are shown in Figure III.3.

The sensory information is elaborated by the brain to produce an output,

interpreted as an action (movement) in the world. Motors function as the output

e�ectors of the organism, changing its location and/or orientation with respect

to a �xed environment referential frame. Motors may di�er in energy e�ciency,

power, orientation, accuracy, etc. Examples of motor types used in the experiments

reported in this thesis are binary and jump motors. A binary motor is very simple

and has been used in many other arti�cial life experiments (e.g., by Nol� et al.

[138]). It allows an organism to move to the cell immediately ahead, turn 90

degrees right or left, or stand still. A jump motor moves the organism ahead

by some distance (determined by the output) and randomly changes its facing

direction. In Figure III.4 we illustrate the operation of these motor systems.

Each organism also has an internal cavity we call its gut. A gut is capable

of holding a number of atoms speci�ed by the organism's genotype. An organism

automatically ingests atoms over which it travels, causing these atoms to be placed

in its gut (irrespective of gut capacity). If the gut already contains some atoms that

are reactive with the new atoms, one or more reactions take place and as a result
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Figure III.3: Two examples of sensory con�gurations. Both systems use internal

gut sensors. One uses only contact external sensors, while the other uses three

ambient sensors with di�erent ranges and orientations. Each sensor can be designed

to signal the presence of any complex of di�erent elements.
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Figure III.4: The functioning of two motor systems. The positions and orientations

that are possible after a move are shown for a binary and a jump motor (with power

1 and 4, respectively). Note that di�erent positions and orientations are not equally

probable. It is possible for LEE organisms to have more than one motor, in which

case the moves are additive.
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the organism either accrues (exothermic reaction) or loses (endothermic reaction)

energy. If at the end of these reactions the gut is still �lled with non reactive atoms

beyond its capacity, some atoms are randomly expelled before the next ingestion,

leaving a \trace" of the organism's presence in the environment. This can be used

as a primitive form of communication among individuals. Furthermore, the gut can

function as an important form of \memory" by the use of internal gut sensors (cf.

Figure III.3). Some, all, or none of these somatic characteristics may be allowed

to evolve in LEE experiments.

Brain

The brain receives input corresponding to the organism's stimuli and

produces output controlling its behaviors. We use a well-studied type of neural

network as our computational model of an organism's brain [154]. The signals from

each sensor are used as the inputs to a feed-forward neural network with zero or

more hidden layers of units, and the neural net's output units are used to control

the motors (cf. Figure III.2). The network mapping sensory states to motor actions

is part of an organism's genome and thus evolves by selection and mutations of

the neural net's connection weights, represented as real numbers. Mutations are

obtained by adding a random deviate (uniformly distributed in some user-speci�ed

interval) to a fraction of the connection weights.

A di�erent way in which behaviors can adapt to the environment, within

the lifetime of an individual, is by learning. The role of three mechanisms of

unsupervised learning that do not assume the presence of any external teacher

| learning by prediction of sensory states, by reinforcement, and by parental

imitation | are explored in Section III.E.

III.B.5 Implementation

The LEE software tool was developed to be used for e�cient simulations

within the framework of the LEE model. The execution of the basic cycle of the
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Figure III.5: Graphical interface of the LEE simulator.

local selection algorithm by each agent in the population is an intrinsically parallel

process; in our sequential implementation, it is simulated via randomly ordered

calls to the agents, to minimize spurious interferences.

The latest LEE release and documentation is available via World Wide

Web at URL http://www.cs.ucsd.edu/users/fil or anonymous

ftp://cs.ucsd.edu/pub/LEE. The source code is cUniversity of California and

its use is free, except for commercial purposes. Copies of the software are also

available at mirror sites on ALife Online, ENCORE/SAFIER, CMU/AI, and other

repositories as well as on CD-ROM freeware.

The LEE package consists of approximately 7,000 lines of C code and runs

on both UNIX and MacOS platforms. The documentation contains directions on

how to compile LEE for di�erent systems. The only machine dependencies are

in the input and output interfaces. While most of the default and user-driven

I/O is implemented through �les, an interactive graphical interface exists for the
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Macintosh. The typical graphical output is shown in Figure III.5. Complete state

�les allow for checkpointing and continuations of experiments across platforms.

III.C Local selection and carrying capacity

By observing some emerging properties of LEE populations, we show that

the task of analyzing the interactions between individuals and their environment is

greatly facilitated by relying on well-founded constraints such as the conservation

of energy, enforced in local selection models. In this section we illustrate the roles

that di�erent measures of �tness (population size, behavior optimality, carrying

capacity) play in latent energy environments.

There is a connection between the size of an evolving population and the

resources available from its environment. Such resources impose a limit on how

many individuals can be sustained. However, di�erent behaviors may result in

di�erent e�ciencies in using the resources of the same environment. Thus it is

the combination of population behavior and environment that characterizes the

carrying capacity of that environment. For example, extinction indicates that the

carrying capacity is insu�cient to support a population large enough to withstand

stochastic uctuations.

LEE allows one to quantitatively estimate adaptedness of behaviors by

monitoring the population size throughout an experiment. To see how, let us

analyze the relationship between latent energy and population size in a particular

example. The experiments reported in the rest of the chapter will make use of

analogous derivations to predict and evaluate evolved behaviors. Consider the

following reaction energy matrix for a simple environment in which two types of

atomic elements, A and B, are distributed uniformly:

A B

A ��E E

B E ��E

(III.2)
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where E and � are environmental parameters subject to the constraints:

E > 0

0 < � < 1 (III.3)

and there are no by-products. Matrix III.2, along with the spatio-temporal dis-

tributions of the elements, determines the environmental complexity. Conditions

III.3 make the environment non-zero-sum. The minimal set of elements that can

be found in the environment and completely transformed into energy by alter-

native behavioral strategies is fA;A;B;Bg. In fact an organism, assuming its

sensory apparatus can perfectly discriminate between these elements, can catalyze

the following sets of reactions:

(A+ A); (B +B) ! �2�E (III.4)

(A+B); (A+B) ! +2E (III.5)

where strategy III.5 is clearly more advantageous than III.4, given the conditions

III.3. If � is the expected rate of replenishment for both A and B elements, then

a set fA;A;B;Bg is produced every 2=� cycles. Thus strategies III.4 and III.5

produce energy changes

�E� =
�2�E

2=�
= ���E (III.6)

�E+ =
2E

2=�
= �E (III.7)

per unit time (cycle), respectively. Let us now consider the situation at equilibrium.

On average, two conditions are veri�ed: �rst, by de�nition, the population size p

remains constant; second, energy is consumed by organisms in the population at

the same rate at which it is produced (otherwise the population size would change).

Using h�i to indicate time averages, we can write:

h�pi = 0 (III.8)

h�Ei = 0: (III.9)



77

Since energy is always conserved, the only consumed energy is that lost

in the form of work, that is, used for moving in the world. At any time step, all

individuals get to make a move. For simplicity we set the cost of all moves equal

to a constant that we call c. Then, using Equation III.8, the average energy used

by the population per unit time is pc.

To calculate how much energy is produced, we must know the strategy

used on average by the population for combining elements. In other words, we

need to determine how e�ciently the latent energy contained in the elements is

transformed into usable energy. It is important to note that resources cannot build

up forever in the environment, otherwise by statistical arguments the equilibrium

would become less and less stable. Therefore, by choosing an appropriate time

unit, we can make the additional assumption (veri�ed in every simulation) that

elements are transformed into energy at the same rate as they are replenished

by the environment. Strategies III.4 and III.5 provide the connection between

elements and produced energy. We then introduce a probability distribution over

these two strategies: let � be the probability of strategy III.5, so that (1��) is that

of strategy III.4. The average energy produced per unit time by the population

is obtained summing the energy changes of Equations III.6 and III.7, weighted by

the corresponding probabilities:

��E+ + (1� �)�E� = �[�E + (� � 1)�E]

so that we can �nally rewrite Equation III.9 as

h�Ei = �E[� + �� � �]� pc = 0: (III.10)

Equation III.10 provides the link between e�ciency of behavioral strate-

gies, expressed through the probability distribution over catalyzed reactions (�),

and population size (p). The remaining variables (�; E; �; c) are environmental pa-

rameters. If � is known, we can solve Equation III.10 for the expected population

size:

p =
�E

c
(� + �� � �): (III.11)
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Figure III.6: Population dynamics in three di�erent environments. The lowest

carrying capacity is such that stochastic uctuations bring the population to ex-

tinction. The two more benign environments allow the population to quickly reach

the di�erent carrying capacities corresponding to the same simple (random) be-

havior.

In particular, the case of optimal behavior, � = 1, corresponds to the

maximum sustainable population:

pmax =
�E

c
: (III.12)

The converse case is useful for estimating the optimality of a population's

behavior at equilibrium, by measuring the population size and solving Equation

III.10 for �:

� =
pc
�E

+ �

1 + �
: (III.13)

As an illustration of this simple analysis, in Figure III.6 population size is

plotted versus time for three simulations with di�erent entries (� and E values) in

reaction matrix III.2. No evolution is allowed in these runs. Disregarding the �rst

damped oscillations (due to an initial abundance of atoms) and the following noise
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uctuations, we readily observe a steady-state regime in which the population size

depends on the rate at which energy is introduced into the world. Simulations

are labeled by the quantity K, which is the carrying capacity for a population of

individuals with random behaviors (obtained from Equation III.11 with � = 1=2):

K = p�=1=2 =
�E

2c
(1� �): (III.14)

We can use these equations to make predictions about the outcomes of the

simulations, and to compare behaviors in the di�erent environments. The smallest

K corresponds to a random behavior population smaller than the amplitude of the

uctuations, so extinction occurs rapidly. Larger K values result in di�erent stable

population levels. Substituting the measured population sizes into Equation III.13,

we �nd that the corresponding strategies are not signi�cantly di�erent (� � 1=2,

or random behavior, in both cases). Therefore the observed di�erence is to be

attributed to the di�erent environments, rather than to di�erent behaviors.

Of course, the linear relation III.10 holds only at equilibrium and for

this simple example: the more general non-equilibrium case and more complex

environments may yield systems of di�erential equations that are di�cult to solve

analytically. In the remainder of this chapter, environments will be designed so as

to keep their analytical characterization simple. We want to stress that carefully

designed latent energy environments allow us to maintain an accurate connection

between environmental and behavioral complexity.

Since individuals interact solely by sharing �nite environmental resources,

�tness is density dependent and thus a�ected by the size of the population. Under

such conditions, carrying capacity is commonly considered in biology to be the best

measure of �tness [168]. We now want to point to the strong role of the environment

under density dependent �tness, by showing that the carrying capacity of certain

environments can be predicted very reliably from knowledge about the environment

alone, without considering behaviors. One such environment, even simpler than

the one described in matrix III.2, is easily characterized: assume that there is just

one element with, say, uniform distribution and rate of replenishment �; let each
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Figure III.7: Correlation of population size with environmental carrying capacity.

Measures of population size are time averages in the steady-state regime, for the

�rst stable behavior; the predicted population sizes are calculated from Equation

III.15 for random behaviors. The x-axis spans a wide range of environmental

parameterizations.
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Figure III.8: Least-squares �t of LEE population dynamics to the logistic growth

model, with carrying capacity K = 100 derived from Equation III.15 and initial

population size p0 = 10. The growth rate of the best �t is r ' 0:53. The �t

between data and model is excellent (r-squared 0.9357, p < 0:0001).

atom be associated with energy E (again, no by-products).3 Equation III.8 still

holds at equilibrium, and Equation III.9 for energy conservation yields in this case:

K � p =
�E

c
(III.15)

where the carrying capacity K corresponds to the size of the population, whatever

the behavior. Equation III.15 is di�erent from Equation III.11 in that there is

no independent variable connected with behavioral e�ects. The prediction, by

Equation III.15, of perfect correlation between population size and environmental

carrying capacity (parameterized by �E) is con�rmed by the measures illustrated

in Figure III.7.

3In the LEE simulator, the oxymoron \unary reaction" refers to the utilization of energy from
a single atom, without the need for combinations with other atoms.
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Given how well we can analytically predict the carrying capacity of a

latent energy environment, based on its reaction matrix and temporal distribution

of resources, it is natural to ask whether the local selection algorithm yields such

a good individual-based model of K-selection, or density dependence, as we have

claimed. At the population level, density dependence is analytically modeled in

the continuous case by the logistic growth equation:

dp

dt
= rp(1�

p

K
) (III.16)

whose solution has the form

p =
K

1 + (K
p0
� 1)e�rt

(III.17)

where r is the growth rate and p0 is the initial population size [83]. To see how

well LEE models logistic growth we have �tted the population dynamics of a run

from Figure III.7 to Equation III.17. We use the carrying capacity from Equation

III.15 in Equation III.17, so that the growth rate r is the only free parameter in

the �t. As Figure III.8 clearly shows, the �t is excellent; LEE is indeed a very

good model of density dependent selection.

It is reassuring to know that even though the individual agents in LEE

act independently of each other and without any centralized control, their sharing

of an environment with �nite-resources results in the well-known logistic growth

model. However, we have seen only one half of the picture | behaviors in the

above environment are inconsequential. When organisms are allowed to evolve

behaviors that may use the latent energy more e�ciently than by a random walk,

an increase in average age and in population size is observed. The situation is

illustrated in Figure III.9, where measures are from LEE simulations with reaction

matrix III.2. During these non-equilibrium phases Equation III.8 does not hold,

and the environment is no longer su�cient to predict carrying capacity. Population

size, on the other hand, can still be used as a �tness measure at the population

level. Its increase is due to the evolution of better behaviors, that bring � from 0.5

to approximately 0.73 (from Equation III.13).
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Figure III.9: The role of behavior in environmental carrying capacity and �tness.

Here Equation III.12 yields pmax = 900, whereas the size of a population with

random behaviors (from Equation III.14) is 150 (marked \random"). Average age

is also shown to be correlated with population size in this experiment (age units

are cycles).
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Just as � in the simple environments described by III.2 can vary between

0.5 and 1, so p can | in any latent energy environment | range between some

low level, corresponding to the carrying capacity of random initial behaviors, and

some maximum carrying capacity corresponding to optimal behaviors. It turns

out that population size is well correlated with both age and expected reproductive

success, a �tness measure used in biology under density dependence. Therefore we

are justi�ed in considering population size our (dependent) measure of �tness in

LEE, and in using it to analyze the interplay between environments and behaviors

of evolving populations.

III.D From complex environments to complex

behaviors

In this section we outline the main results of three LEE experiments.

Each experiment explores a di�erent dimension of environmental complexity, by

a set of environments designed to characterize and vary such complexity. We

then analyze the evolving population to �nd the ways in which it responds and

becomes adapted to the di�erent complexities. These experiments are aimed at

identifying the degree to which the environment can create and shape the selective

pressures driving the adaptive process. We �rst focus on the evolutionary aspect of

adaptation, considering the internalizations of environmental complexity into agent

behaviors that can be achieved by the local selection algorithm alone; learning will

be considered in Section III.E.

Noise plays an important role in the LEE simulator, and this is reected

in stochastic uctuations of all the monitored variables. By repeating a simulation

for several runs, each with di�erent initial conditions, we can average out such

noise and �nd statistically signi�cant e�ects. The results reported here are all

found to be statistically signi�cant across runs, but will be visualized more easily

by plotting results of single runs.
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III.D.1 Patchiness

Experimental setting

In the �rst experiment, the latent energy of the environment is as de-

scribed in the reaction matrix III.2 of the previous section. Since the spatial

dimension is crucial for environmental characterization, we have explored this di-

mension by observing the response of an evolving population to variations in the

spatial distributions of elements in the world.

The environment is replenished with atoms of both elements at a constant

rate and according to pseudo-gaussian distributions along the two spatial axes. We

obtain a pseudo-gaussian probability density in LEE by adding one or more uniform

probability densities on some interval along each axis. The more of these uniform

probability densities are added, the more peaked the resulting distribution (i.e.,

the smaller its variance). This is a standard statistical method, derived from the

central limit theorem.

We consider four such environments of increasing patchiness, each ob-

tained by adding between one and four uniform probability densities, for each

element and for each axis. These are shown in Figure III.10. This LEE world is

25 by 25 cells wide; however, due to its toroidal edge conditions, the environment

appears as arbitrarily large and periodic. The patch centers of the two elements

are o�set diagonally. The �rst, uniform environment has no spatial structure and

thus no patch size; in this sense, it is the simplest. The patchy environments have

increasing spatial structure, which we consider a source of complexity. The patches

overlap largely in the second environment, less in the third, and are completely

separated in the fourth and last environment. Therefore the patch size decreases

from the entire world size to about half of the world's diagonal.

To signal the presence of either element in its neighborhood, each organ-

ism has two ambient sensors, oriented forward (cf. Figure III.3). Like all ambient

sensors used in this section, they have a range of 5 cells. By comparing the two
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Figure III.10: Snapshots of four environments used for the patchiness experiment.

They are ordered (clockwise from top left) according to increasing patch complex-

ity: from the simplest case of uniform element distributions to the most structured

environment with sharply separated element patches. A and B atoms are marked

as squares of di�erent shades of gray.
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Contact sensors Gut sensors Jump motor
A A Not nearest
B A Nearest
A B Nearest
B B Not nearest

Any condition Empty Any move

Table III.1: Behavior of maximum energy e�ciency for uniform environments in

the patchiness experiment. No cell contains both A and B atoms because they

would react together, so that contact signals cannot be ambiguous. \Nearest"

means jumping to the cell immediately facing the organism, i.e., the one sensed by

contact sensors.

signals, an organism can discern whether it is located closer to an A or B patch.

There are also two contact sensors, identifying the content of the cell facing the

organism. Finally, two gut sensors make it possible to compare external patch

signals with previously ingested atoms and decide whether they are of the same or

di�erent elements. The four sensors provide input to the neural net, which has six

hidden units and one output. The latter drives a single jump motor (cf. Figure

III.4). Like all jump motors used in this section, this has power 10 | an agent

can jump a distance of at most 10 cells.

Given this representation, adaptive individuals can evolve behaviors yield-

ing the di�erent carrying capacities obtained by Equation III.11. The parameters

(�; E; c) of the simulations are set in such a way that a population with random

behaviors, catalyzing all reactions with equal probabilities, has a size p�=1=2 = 50

(from Equation III.14). Given the characterization of the environments in this

experiment, it is easy to see that the most e�cient behavior consists of jumping

far from patches of the same element as an atom in the gut, and otherwise forag-

ing with small jumps: this way exothermic reactions are catalyzed. The carrying

capacity of this collective behavior is pmax = 200 (from Equation III.12).

Up to a point, patch size of the environment determines how complex

such e�cient behavior can be. In uniform environments, contact sensors alone
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Ambient sensors Gut sensors Jump motor
A > B A Far
B > A A Near
A > B B Near
B > A B Far

Any condition Empty Any move

Table III.2: Behavior of maximum energy e�ciency for clustered environments in

the patchiness experiment. Hidden units must perform the comparisons between

ambient signals. \Far" and \near" mean jumping distances greater or smaller than

patch size, respectively.

provide all the information needed to implement such behavior, as shown in Ta-

ble III.1. No patch size information is available, because there are no patches.

Nothing is to be lost from jumping too far or too near, as long as endothermic

reactions are avoided. In environments with spatially clustered elements, on the

other hand, space is more structured and thus more complex. The population

needs to evolve an \understanding" of environmental structure (e.g., patch size)

to gauge appropriate moves. Organisms need to make use of the more ambiguous

information provided by ambient sensors | and perform preliminary comparisons

between their signals | to decide how far to jump (recall that the direction of a

jump cannot be decided). Due to the two additional requirements (comparison of

inputs and gauging patch size) this is a more complex behavior, as illustrated in

Table III.2.

Of course, the complexity of the task would be greatly a�ected by changes

in the sensors, as discussed in Section III.E.1. With the given sensory system,

however, such is the direction in which we expect environmental complexity to

drive the evolution of adaptive behaviors in this experiment. More complicated

spatial organizations (e.g., checker-board patterns and other layouts with even

higher spatial order statistics) can reasonably be expected to require still greater

sophistication from individuals' cognition.
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Figure III.11: Population size for two �xed environments. These are the �rst (uni-

form) and the last (most patchy) worlds of Figure III.10. The predicted carrying

capacities corresponding to random and most e�cient behaviors are also shown.

Results

We have run four simulation with di�erent environmental conditions. The

�rst two simulations have stationary environments, whose complexity remains con-

stant through evolutionary time. The last two have changing environments, whose

complexity increases in di�erent ways.

Populations adapting in the two �xed environments reach carrying ca-

pacities shown in Figure III.11. The patchy environment is more complex and the

population is unable to evolve any behavior superior to the random one, as seen

by comparing population size with the predicted carrying capacity of the random

behavior. The uniform environment is more benign and (a good part of) the pop-

ulation can evolve the more e�cient behavior of Table III.1, resulting in a carrying

capacity about three times as large (� � 0:83 from Equation III.13). The residual

selective pressure does not appear su�cient for convergence to the optimal strategy



90

50

200

0 250 500 750 1000

p

cycles x 100

max
sudden
gradual
random

Figure III.12: Population dynamics for two changing environments. The \sudden"

change is a single transition, at 50,000 cycles, from the uniform to the most patchy

worlds of Figure III.10. The \gradual" change is made of three transitions, every

25,000 cycles (see vertical grid), through all of the four worlds of Figure III.10 in

order of increasing patchiness. The predicted carrying capacities corresponding to

random and most e�cient behaviors are also shown.

within the observed evolutionary time, i.e., to push the population to its maximum

size.

Figure III.12 illustrates what happens to the populations evolving in the

two environments of increasing complexity. When the environment suddenly be-

comes very patchy, the population continues to apply the evolved behavior of Table

III.1 with catastrophic consequences; the population size decreases to the random

level. Since the individuals are essentially behaving the same way right before and

right after the environmental transition, we could say that the carrying capacity

of the environment has dropped. However, the population then grows again, be-

coming signi�cantly higher than random (� � 0:63). This is evidence that (part
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of) the population is able to evolve a behavior similar to the one of Table III.2. In

the simulation where the environment becomes gradually more patchy, adaptation

is not so catastrophic. There are small performance degradations that are quickly

o�set by the evolution of improved behaviors, so that �nally the population can

cope quite well with the most patchy environment | over doubling with respect

to the population starting in the patchy environment (� � 0:7).

Discussion

The above results demonstrate, in the �rst place, that patchiness can pro-

vide a useful measure of environmental complexity. Further, spatial heterogeneity

a�ects evolved behaviors. A uniform world is simple because there is nothing to

be learned about di�erent parts of it: it is the same everywhere. Here, as shown

by Figure III.11, the simple behavior of Table III.1 is discovered rapidly by the

evolving population. Conversely, a patchy world is complex because of its spatial

structure. If such complexity is too large for the population to make sense of it,

then no behavior evolves to exploit its resources better than by moving at random.

The evolutionary leap from random behavior to the strategy of Table III.2, in

terms of individual neural networks, is much larger than to the strategy of Table

III.1. We conclude that in the most patchy environment, the selective pressure

away from the random behavior is too small to discover more complex behaviors

within the observed evolutionary time.

Simpler environments have additional advantages for the adaptive indi-

viduals. As Figure III.12 indicates, behaviors adaptive in the more complex envi-

ronments can indeed be evolved but only if the population has previously adapted

to less complex environments. Thus a gradual increase in environmental complex-

ity generates an adaptive response in the collective behavior evolved.

If the environment undergoes a large increase in complexity, any advan-

tage of previously evolved behaviors seems lost: after the sudden transition occur-

ring at 50,000 cycles, the population goes down to the random level, evidence that
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the simple behavior appropriate for the uniform environment (cf. Table III.1) is

not adaptive in the patchy environment. This catastrophe is only illusory, how-

ever: the fact that population size grows again in the following phase represents

evidence that the more complex behavior (cf. Table III.2) has evolved. This did

not happen when the environment was patchy to start with (Figure III.11); the

adaptive behavior evolved in the milder environmental phase therefore provides

an evolutionary stepping point. This phenomenon is sometimes referred to as

pre-adaptation.

III.D.2 Mutualism

Experimental setting

The second experiment explores the role of environmental complexity in

enforcing ecological balance. The environment permits the population a more

robust survival when this is structured in such a way to maximize its biodiversity.

The population is divided into two \species" distinguishable by a genetic marker;

parents pass their species gene to o�spring. Some degree of ecological stability

might be provided if it were possible for this genes to mutate occasionally. However,

in this experiment we are interested in the conditions under which biodiversity is

maintained by environmental pressures alone. Therefore the species gene is not

mutated. Since reproduction occurs asexually by cloning, species are completely

determined by phylogeny. Let us call a and b the alleles of the species gene. Let

us further assume that the two species have di�erent metabolisms, given by the

following mutualistic reaction matrices:

a A B

A E + 2B

B ��E

(III.18)



93

b A B

A ��E

B E + 2A

(III.19)

for species a and b respectively. Both A and B elements are uniformly distributed

and replenished at the same, low rate. In this experiment, the world can �ll up

with unused elements. If this occurs, replenishment of those elements is suspended.

Since di�erent elements are never reactive, and conditions III.3 still hold,

all individuals have only two (non-exclusive) possible actions. This simpli�es the

range of behaviors that we can explore in this experiment. The �rst action is

to ingest atoms of the element whose symbol is the (capitalized) letter of their

species allele, and gain energy; the second possibility is to ingest atoms of the

other element, and lose energy. Notice, however, that in the former case there are

by-products which may still react in the gut and consume part of the energy that

was acquired with the original action. This will happen half of the time on average,

due to the digestion algorithm (cf. Section III.B.4); gut contents are shu�ed, and

then reactions occur in the order determined by a single pass through the atoms

in the gut. The e�ect is easily accounted for in the computation of environmental

carrying capacities.

The \optimal" (most e�cient) behavior requires that species a and b cat-

alyze exothermic reaction by foraging for A or B atoms, respectively, and avoid

other atoms by turning away. Note that agents do not have access to their species

markers, so they have to internalize this information from their interactions with

the environment. The consequences of the optimal collective behavior are condi-

tional upon the biodiversity of the population; in fact, if one species goes extinct,

the optimal carrying capacity halves because the remaining species can no longer

use the other's by-products. The random behavior is to always move ahead, irre-

spective of input, and eat every atom along the way. Biodiversity has no e�ect on

a population with random behavior.

The representation of individuals is quite simple. Each organism has two
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contact sensors signalling the presence of A or B atoms in the facing cell. Its

neural net has four hidden units and two outputs driving a single binary motor

(with power 1). The gut's size is 1 | that is, it can hold at most one previously

ingested atom between actions. Since only same-element atoms react, there is no

need of gut sensors.

Results

We have run two simulations for this experiment, using � to model two

environments of di�erent complexity. In the �rst \easy" environment, � = 0:1.

The parameters are such that the carrying capacity achievable in this environment

by the optimal collective behavior described above is pmax = 95. The population

cannot go beyond this limit. This environment is quite benign and thus there is

small pressure to push the population above carrying capacity corresponding to

the random behavior (p�=1=2 = 42:75). In fact, as shown in Figure III.13, the

population does not go beyond such level within the observed 50,000 cycles.

In the second \hard" environment, � = 0:5 and thus the situation is more

harsh. The maximum carrying capacity of this environment, for an optimal pop-

ulation, is pmax = 75; the random carrying capacity is p�=1=2 = 18:75. The ratio

between the former and the latter is almost twice as large as in the easy environ-

ment, therefore there is larger selective pressure toward more e�cient behaviors.

Figure III.14 shows the population dynamics in this simulation. After 50,000 cy-

cles, the population has evolved a collective behavior consistently superior to the

random one (� � 0:69).

A more interesting statistics in this experiment is the biodiversity of the

population, based on the species gene. We have plotted in Figure III.15 the evolv-

ing biodiversity of the two simulations with easy and harsh environment. In the

former the biodiversity goes to zero, which is an absorbing state due to the lack of

mutations on the species gene. Therefore one of the two species has gone extinct

for good. In the latter, however, the biodiversity is maintained at its maximum
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Figure III.13: Population size in the easy (� = 0:1) environment. The predicted

carrying capacities corresponding to random and most e�cient behaviors are also

shown.
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Figure III.14: Population size in the hard (� = 0:5) environment. The predicted

carrying capacities corresponding to random and most e�cient behaviors are also

shown.



97

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

bi
od

iv
er

si
ty

cycles x 100

easy envt
hard envt

Figure III.15: Biodiversity of the population in the two environments of the mu-

tualism experiment. This is measured based on the species gene and normalized

so that 1, the maximum value, means that half of the total population belongs

to each species; 0 means that all individuals belong to one and the same species,

while the other has gone extinct.

(not an absorbing state) showing perfect balance between the two species thanks

to their capability to consume and replenish each other's resources.

We have arbitrarily killed the biodiversity in a variant of the hard environ-

ment simulation, by setting all species genes to the same allele after 50,000 cycles.

This a poor man's model of some \environmentally unsound" external action, like

an oil spill or some other disaster causing the fracture of the food chain. Fig-

ure III.16 shows that the consequence is catastrophic; complete extinction follows

swiftly.

We have extended the simulation in the harsh environment to compare

the consequences of self-preserved vs. killed biodiversity on population dynamics,

but also to see whether the population size can further increase toward the optimal
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Figure III.16: Population size in part of the extended simulations with the hard

environment (cf. Figure III.14). The normal case with evolving biodiversity is

compared with the one in which the biodiversity is killed after 50,000 cycles (see

text).
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level if given su�cient evolutionary time. The result of a 500,000 cycle-run (shown

only in small part in Figure III.16, for clarity) is a very slow improvement that

eventually reaches a population size over 2.5 times larger than the random behavior

level (� � 0:78).

Discussion

This experiment also shows how the environment creates the selective

pressures for the evolution of adaptive behaviors. Environmental complexity is

measurable here by the ratio between the energetic outcomes of the di�erent reac-

tions. This heterogeneity of selective pressures has a direct impact on the carrying

capacity of random behaviors: the more complex the environment, the harder to

survive without adaptation.

When the environment is so benign that the random behavior has a car-

rying capacity close enough to that of the optimal behavior, there is not enough

pressure for organism to improve their e�ciency. Biodiversity in this experiment

is not a genetic trait that can be selected for; it is a collective property of the pop-

ulation. Therefore it is subject to genetic drift in the course of evolution. Since

zero is the only absorbing state | one from which the population cannot escape |

the biodiversity drifts to zero after about 8,000 cycles, as shown in Figure III.15.

From this moment on, all individuals are of the same species, so only one element

can provide positive energy. The carrying capacity of the optimal behavior, as it

turns out, decreases to only about 11% higher than the random one, explaining

why nothing else happens (Figure III.13).

Harsher environments make a random population smaller. Just like too

much environmental complexity prevented evolution in the patchiness experiment,

too large a value for � would lead to extinction in this experiment. A moder-

ate increase in selective pressure, however, causes better than random behaviors

to evolve, as Figure III.14 illustrates. At least part of the population catalyzes

exothermic reactions, creating by-products that help the other species. This col-
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lective behavior, requiring the presence of both species, is e�ectively a form of

mutualism and increases the carrying capacity thanks to the extra energy from

by-products. This indirectly pushes biodiversity to a maximum, as it happens

(Figure III.15): each species needs the other.

In other words, we see two selective pressures reinforcing each other. The

presence of individuals with e�cient foraging behaviors in a certain area creates

selective pressure in favor of individuals of whatever species is less frequent in

that area (they have more food available), thereby increasing biodiversity. The

ecological balance between species maintains carrying capacity at its maximum

and thus creates selective pressure in favor of individuals with e�cient foraging

behaviors. This \selective loop" occurs locally in the environment, mediated by

the resources, yet we observe a larger role of the individuals locally shaping each

other's environment.

Once this coupled adaptive process is \bootstrapped" by a su�ciently

complex initial environment, it gives rise to behaviors that depend upon the diverse

ecosystem. In fact, as Figure III.16 shows, the biodiversity annulment has a much

more catastrophic consequence in the complex environment | extinction. This

phenomenon is due to the population no longer behaving randomly; each species

relies on the existence of the other for providing the resources that can sustain its

size. When those resources disappear, the carrying capacity of the environment

drops dramatically and the violent population uctuation that follows leads to

extinction. Therefore the environment determines the necessity of mutualism and

biodiversity. Ecological balance can provide for robust adaptation in complex

environments.



101

III.D.3 Seasonality

Experimental setting

In the third experiment, we consider continuously changing environments.

Under such conditions it makes no sense to speak of stable carrying capacity in the

sense of Section III.C; instead, we expect environmental uctuations to drive the

adaptive process in an equally continuous fashion. In particular, we want to model

seasons and therefore choose environments characterized by periodic, sinusoidal

patterns of change. To this end, consider a world with two uniformly distributed

elements, with constant replenishment rate, that give o� energy as follows:

A ! EA = E0 + � sin(2�t=�) (III.20)

B ! EB = E0 � � sin(2�t=�) (III.21)

without need of binary reactions and without by-products. As in the previous

experiment, if the world �lls up with unused elements, replenishment of those

elements is suspended.

Here t represents time (measured in cycles) and � is a seasonal time

constant that we will assume to be �xed throughout a simulation. We can think of

the elements as two food sources, e.g., fruits, whose caloric contents vary with the

passing of seasons, one reaching its high peak in the summer and the other in the

winter. Note that if � > E0, each food becomes \poisonous" in its bad season. We

are interested in observing how the population adapts to the seasons when either

environmental resource alone is insu�cient to guarantee survival.

Each individual has two contact sensors, signalling A and B atoms re-

spectively in the facing cell. Because of the \unary" reactions, there is no need for

gut sensors. There are two hidden units and two outputs driving a binary motor.

As in the previous experiment, ignoring input leads to the random behavior of

always moving forward, eating all atoms. We can easily derive a \time-averaged"

carrying capacity for this behavior and the seasonal environment, in the same form
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of Equation III.15, but setting the value of E as follows:

E = EA + EB = 2E0: (III.22)

This behavior, however, neglects the complexity of the environment provided by

the seasonal uctuations.

At any given moment (except the instants when EA = EB = E0) one

element is more energetic, so one possible action would be for individuals to avoid

the other element. As long as the other element remains exothermic, this is a less

e�cient behavior than the random one; but as soon as the other element becomes

endothermic, such poison-avoidance strategy is a winner. It requires, however,

that organisms be able to \track" the environment to tell the energetic content

of an atom before ingesting it, a capability that sensors do not provide in our

experiment. It is instead possible for the population (or a part of it) to converge

on a behavior avoiding one of the two elements (say, B, the one that �rst goes

through winter). This (sub)population would have a carrying capacity again given

by Equation III.15, but with E = EA. The rest of the population (or a part of it)

could in theory converge on the opposite behavior (say, avoiding A) with carrying

capacity following Equation III.15 with E = EB.

Following Roughgarden [150], we expect the adaptive process by endoge-

nous �tness to favor individuals who are robust in the face of environmental change.

Given the sensory limitations, and the fact that a single individual's behavior is

�xed throughout its lifetime, selective pressure will shift seasonally on those in-

dividuals making the best use of the current season's resources. We therefore

predict the formation of subpopulations of individuals adapted to the di�erent

seasons, shifting in relative size with seasonal changes.

Results

In the seasonality experiment we analyze two simulations. The amplitude

of environmental oscillations remains constant in the �rst, a simpler condition that
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makes it possible to interpret the behavior evolved by the population. In the second

simulation the oscillations become more and more violent, putting the robustness

of the collective behavior to the test.

In the �rst simulation � = E0, i.e., the energetic value of each element

has a minimum of zero. The situation is illustrated in Figure III.17. The fact

that the population oscillates, well correlated with A energy, indicates that it is

di�erentiated. Inspection con�rms that one subpopulation follows the B-avoidance

strategy and a second one the random behavior. These are adaptive because both

realize the higher energy provided by A atoms; individuals do not evolve the A-

avoidance behavior because initially it is maladaptive to avoid energetic A atoms.

Since all A is consumed, the population level is very close to the case in which

there is no B; and since some B is consumed as well (by the subpopulation with

random behavior), it is slightly higher. However, many B atoms are left over

by the B-avoidance subpopulation and later consumed by the random behavior

subpopulation when their energy content is higher. This joint strategy by the

two subpopulations turns out to be a very robust collective behavior, because the

available resources are used e�ciently. Another source of robustness is the energy

contained in the individual reservoirs. The observed oscillations of its population

average reect seasonal uctuations, as is also illustrated in Figure III.17: energy

accumulates in good times and then is spent slowly in bad times.

In the second simulation � = �t, i.e., the amplitude of the energy oscilla-

tions in this environment increases linearly with time. The situation is illustrated

in Figure III.18. At �rst, when the environment is almost stationary (� � E0),

the random behavior is good enough. As the environment becomes increasingly

harsh, however, individuals evolve into subpopulations with di�erentiated behav-

iors just like in the previous simulation. Eventually the two elements become in

turn poisonous and their ingestion extremely dangerous. Nevertheless, the pop-

ulation survives for a long time after � > E0, providing further evidence for the

robustness of the evolved collective behavior. Finally, after 150,000 cycles, the
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Figure III.17: Results of the simulation with �xed-amplitude energy oscillations.

The energy of the two elements is shown on an energy scale (bottom). E0 = 5, as

in the following simulation. The period is � = 5000. A and B atoms have equal

rates of replenishment. The resulting population size is plotted, along with the

average energy reservoir levels.
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Figure III.18: Population dynamics of the simulation with increasing-amplitude

energy oscillations. The slope of the amplitude is � = 2 � 10�4cycles�1. The

energy of the two elements, replenished at equal rates, is shown on an energy scale

(bottom). The period is � = 10000 cycles.

environment is just too violent and the population goes extinct.

Figure III.19 shows the average age of the population in the same sim-

ulation. Observing this changing life-history trait assists us in understanding the

dynamics of the adaptive process. From 0 to about 20,000 cycles, age increases

steadily. In this phase there is a transition from the initial uniform population

with random behavior to a structured population. The following general trend of

decreasing age is an indication of shorter lives caused by increasing environmental

harshness.

A more interesting observation comes from inspecting the �ner details

of age dynamics. Between approximately 20,000 and 90,000 cycles, average age

uctuates following a single wave form, anticorrelated with A energy and popu-

lation size (cf. Figure III.18). As we �nd out by inspection, this indicates that
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Figure III.19: Average age of the population evolving in the environment with

increasing-amplitude energy oscillations.

the population has split into two subpopulations with random and B-avoidance

behaviors, respectively; average age decreases when population increases (more A

births than deaths) and vice versa. After about 90,000 cycles the age uctuations

become more convoluted and reveal a complexity that was not detectable from the

population plot. In fact, two low peaks emerge during each period; new individ-

uals are born during both A and B seasons! The explanation is that there are

now three subpopulations. The environment has created selective pressure for the

A-avoidance behavior to emerge as well | this is as adaptive as the symmetric

B-avoidance behavior. Of course, all subpopulations must eat at least one element

and thus eventually become extinct during the season in which it is poisonous.

Discussion

In the seasonality experiment, the increase of environmental complexity

(from stability to uctuations of growing amplitude) drives the di�erentiation of
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individuals into a composite collective behavior. The complexity of the evolving

population could be de�ned as the number of subpopulations, each with a unique

individual behavior, of which it is composed.

We �rst observe this (Figure III.17) when two subpopulations evolve in

a relatively benign environment with energies oscillating always above zero and

with �xed amplitude. The synergy of the two subpopulations provides for a more

robust collective behavior than either strategy alone could accomplish. Survival is

guaranteed because the best possible use is made of available resources | given

the limitations of the sensory system.

It is worth noting that for a uniform population to accomplish the same

behavior, it would be necessary for evolution to adapt behaviors at each season,

with an ever-young population always behaving optimally in its season and dying

| replaced by a new generation | when the next season sets in. This might have

been possible had we used a much lower reproduction threshold, thus increasing the

reproductive rate. Such a behavior could also emerge through the use of learning

during each agent's lifetime, thus possibly detecting environmental changes at

a smaller temporal scale than evolution alone can do. However, it is virtually

impossible with the parameters and mutation rates used in the experiment, due

to the short duration (�=2) of the seasons. On the contrary, some individuals

belonging to each subpopulation survive during their bad season, thanks to the

energy accumulated in their internal reservoir during their good season. This is

reminiscent of the way some mammals hibernate during low-resource seasons.

Figure III.18 illustrates a similar di�erentiation occurring when the am-

plitude increases with time and brings the oscillating energies below zero. Further

analysis of the age statistics (Figure III.19) has shown that as the uctuations

grow and the environment becomes less stable, the population splits again and a

new subpopulation �lls the one niche that had not yet been taken advantage of |

energy from B atoms. This does not improve the overall carrying capacity, since

B atoms were already being consumed by the other two subpopulations. In fact,
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no change is observed in the trend of the population curve (Figure III.18). Yet

we speculate that the emergence of the last behavior has the bene�cial e�ect of

prolonging the survival of the population, based on the observation that the long-

term decreasing trend in average age becomes less severe in the last 40,000 cycles

(see Figure III.19).

III.E Interactions between evolution and learn-

ing

To the best of our knowledge, LEE is the only ecological simulation model

allowing for the study of adaptation at both the population level (evolution) and

the individual level (learning) simultaneously. This feature makes it possible to

use LEE to explore some of the many possible interactions between learning and

evolution. In this section we outline a number of such interactions elicited by latent

energy environments.

In particular, we consider two types of internalization of environmental

signals: one with respect to morphological traits, and one with respect to life

history traits. The individual plasticity models used in these experiments are

three types of reinforcement learning, driven by sensory predictions, associative

reward-penalty, and parental imitation, respectively. In each case there is a \weak

supervision" in the sense that agents are provided with reinforcement signals by

the environment or by other agents | never by an external teacher. Learned

changes only a�ect phenotypes, as learning is strictly non-Lamarckian.

III.E.1 Evolving e�cient sensors

A critical aspect of all arti�cial life models is how the organism/environment

\interface" is de�ned. This speci�cation e�ectively cleaves the modeler's problem

into two, a model of the internal \cognitive" system the organism uses to control
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its behavior (the brain in LEE), and a model of environmental change, due in part

to these behaviors. In many arti�cial life models, the complexity of the behaviors

displayed by the organism is evaluated without taking into account the role played

by the sensory system and motor system engineered by the modeler. Rather than

assuming any such a priori division, we propose to investigate the evolution of the

organism/environment interface itself.

The sensory system in particular provides a strong coupling between envi-

ronmental complexity and di�culty of the survival task. Intelligent behavior may

result from complex sensors and trivial processing of this information, or simple

sensors and clever processing [127, 175, 30]. In fact, experiments by Miglino and

Parisi [130] in which the arbitrary speci�cation of the sensory interface appeared

to have important consequences for learning helped to motivate our work.

Sensors | transducers from external environmental signals to the internal

cognitive system | therefore represent a crucial link between two distinct adaptive

forces. They are simultaneously phenotypic features shaped by evolutionary forces

to de�ne a species' relationship with its environment, and the \input" channels on

which a cognitive system's abilities to act and learn are entirely dependent. Fea-

tures of the sensory system such as determinism, reliability, information content,

computational complexity, signal/noise level, locality, etc. determine the di�culty

of the task to be performed by the organism. The same holds for the motor system,

but in this section we will limit our attention to the sensory system.

Experimental setting

In order to quantitatively estimate optimality of behaviors and sensory

systems, we will use the following reaction matrix for three atoms, A, B and C:

A B C

A ��E E

B E ��E

C

(III.23)
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with no byproducts. This environment is similar to the one described by matrix

III.2, and in fact they are equivalent from an energetic point of view, so that

the full analysis of Section III.C holds. The only di�erence of matrix III.23 is

in the potential presence of the C element. This is non-reactive and thus makes

no contribution to the carrying capacity of the environment. In fact, since the

presence of C atoms is irrelevant, we leave them out of the environment entirely.

Therefore we set �C = 0, and �A = �B = �. However, C's presence in matrix

III.23 can a�ect an agent's performance because if a sensor is devoted to detecting

the presence of C rather than A or B elements, it will e�ectively detect noise; the

agent would in such a case waste its sensory resources on a useless signal, rather

than detecting signals (A or B) that might allow for e�cient foraging strategies.

To study the evolution of sensory systems, we allow mutations of genet-

ically speci�ed sensor complexes in addition to neural net weights. Each sensor

signals the presence of a complex of (possibly multiple) elements. In the experi-

ments described here, a sensor complex corresponds to a single element. Random

mutations at reproduction can change the complexes of an o�spring's sensors with

respect to its parent's. The probability that any sensor complex is mutated, or

sensor mutation rate, is set to 0.05.

Let us now consider an agent's architecture. All organisms are endowed

with a single binary motor and a pair of gut sensors. The rest of the body and

brain speci�cation depends on the learning model that we choose. We consider

two variants of the basic architecture of Figure III.2, each allowing for a di�erent

source of feedback for reinforcement learning. The sensory con�gurations of both

variants are illustrated in Figure III.3.

With the exception of the simulations using predictive learning (described

ahead), an organism uses a pair of contact sensors and its neural net has a hid-

den layer with two neurons. If reinforcement learning is applied during the life of

such an individual, it follows an extension of the Arp (associative reward-penalty)

algorithm [8]. Network weights are modi�ed immediately after actions catalyzing
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non-zero energy reactions. If a reaction is exothermic (reward), the teaching in-

put corresponds to the motor action just performed. If a reaction is endothermic

(penalty), the teaching input is the binary negation of the action just performed.

The weights are then updated by standard back-propagation of error [153]. This al-

gorithm is equivalent to complementary reinforcement back-propagation, or CRBP

[1].

In the simulations using predictive learning, an agent uses three pairs of

ambient sensors and its neural net has eight hidden units. This architecture may

seem unnecessarily complicated, but is justi�ed by the use of a predictive learning

algorithm. Following the work of Nol� et al. [138], the neural net's output is

extended to produce not only a motor action, but also a prediction of the sensory

input it will receive after that action. This prediction is compared with the actual

sensory information following the action, and the prediction error is then minimized

by back-propagation.

Predictive learning demands a di�erence, in either space or time, between

sensory inputs. The reason is the same as for approaching (cf. Section III.B.4).

To allow a spatial comparison of signals, we use two ambient sensors directed

towards opposite sides of the organism, each with a range of 2 moves; to break the

lateral symmetry of these two sensors, we add a third ambient sensor with range

3, oriented frontally. Each sensor is replicated twice to allow full information (as

will become clear in the next subsection), for a total of six ambient sensors and

two gut sensors. Note also that in this architecture, the weights from the hidden

layer to the motor units cannot be modi�ed by learning; they can only change due

to evolutionary forces.

Control runs

Using only contact sensors, it is impossible to approach atoms. Atoms

must be encountered by some type of \blind" foraging pattern. Given the toroidal

structure of the LEE world and the binary motors, always moving straight ahead
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if the gut is empty, go forward

else if the forward cell's content is the same as the content of the gut, turn

else go forward

Figure III.20: Optimal behavior for full-information sensors.

Gut sensors Contact sensors Move
A A Turn
A B Forward
B A Forward
B B Turn

Table III.3: Implementation of the optimal behavior for full-information sensors.

is typical. With only blind foraging allowed, and for the environment described by

matrix III.23, the optimal behavior is shown in Figure III.20.

To implement this optimal strategy, the sensory system should ignore C's

and discriminate A from B with both gut and external sensors. Assuming the

availability of gut and contact sensors giving accurate discriminating information,

an (example of) optimal neural net function can be represented as in Table III.3.

Note that this table simpli�es the space of potential behaviors from the

entire repertoire of available sensors in order to focus on the four consequential

decisions. To make the discriminations necessary for this optimal strategy, one of

the gut's two sensors must sense A and the other B, and the same must be true of

the two external sensors.

If some sensors give information that is only partially discriminating,

then only suboptimal strategies are possible. For example assume that the gut's

sensors are as above but the environmental sensors both sense A. With this limited

information, the best possible strategy is shown in Figure III.21. The neural net

implementation of this strategy is shown in Table III.4.

if the gut is empty, go forward

else if both the gut and the forward cell's contents are A, turn

else go forward

Figure III.21: Suboptimal behavior for partial-information sensors.
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Gut sensors Contact sensors Move
A A Turn
A ? Forward
B A Forward
B ? Forward

Table III.4: Implementation of the suboptimal behavior for partial-information

sensors.

Critically, this sub-optimal strategy is a function very much like \inclu-

sive OR," which is known to be much simpler than the \exclusive OR" function

underlying the optimal strategy above.

To verify that full information sensors can in fact a�ord better adapted

behaviors, we �rst run two control simulations aimed at measuring the baseline

and best �tness (carrying capacity) obtainable by evolving the network connections

alone. There is no learning during life, and the sensor con�gurations are �xed.

The worst possible sensors are those that leave the organism blind, i.e., without

any information whatsoever about the gut or the external environment. This is

done by setting all sensors to C, so that the inputs of the network are always

zero: the adapted weights must implement constant actions, independent of the

environment, i.e., a \random choice" behavior. The best possible sensors are those

allowing organisms to discriminate between A and B atoms. This is done by setting

both sensor pairs to (A,B): the adapted weights may use these \full information"

signals to implement the optimal strategy of Figure III.20, for example in the way

shown in Table III.3.

The results are shown in �gure III.22. Random choice, as expected, can-

not show any improvement past the very initial phase in which the strategy to

always move sets in. Full information sensors, on the other hand, allow near-

optimal convergence. To see this, note that the population size at the end of the

simulations corresponds to � � 0:87 (from Equation III.13). Inspection con�rms

that the majority of organisms at the end of the simulations exhibit behaviors

equivalent to the optimal strategy.
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Figure III.22: Population size in two control simulations with blind sensors (ran-

dom choice) and full information sensors. Averages and standard errors are com-

puted over di�erent runs.
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Given that informative sensors have higher �tness than non-informative

ones, as measured by carrying capacity, we expect selective pressure in favor of

e�cient sensory systems when these are allowed to evolve. The only gut and

contact sensor pairs which a�ord the information necessary for the optimal strategy

are (A,B) and (B,A). In either case, we expect the population to converge to

optimal percentages of 50% for A (and B) sensors, and 0% for C sensors.

Figure III.23 plots the evolving sensor complexes in simulations with

evolving networks and sensors, by plotting percentages of A and C summed over all

sensors in the population. Although the trend is consistent with our expectation,

the large error bars indicate the importance of random genetic drift in these runs.

Upon repeating the simulation for di�erent runs, sensor percentages converge to

highly dispersed values. Our interpretation of such a large drift is that only about

5% of the possible sensor con�gurations (4 out of the total 34 = 81) allow for

optimal strategies to evolve. Furthermore, these con�gurations do not all share

the same coadapted connection weights, so the resulting behavior is very fragile in

the face of mutations on the sensory system.

In contrast, a suboptimal strategy like the one shown in Table III.4 can be

implemented with 28=81 � 35% of the sensor con�gurations. While this strategy

results in somewhat inferior performance, it is more robust because not only more

con�gurations can achieve it, but more importantly, many of them function with

the same network weights. This follows naturally from some of the sensors being

redundant with respect to the suboptimal strategy; these sensors can be mutated

without a�ecting the network behavior. Such redundancy is also the source of

the observed genetic drift: robustness and drift are two faces of the same selective

pressure against optimality. To be sure, optimal sensors are generated from mu-

tations at all times, but they are destroyed before the connections evolve to the

coadapted weights. The fact that the suboptimal strategy is the winning one is

also con�rmed by inspecting organisms at the end of runs.



116

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

<
%
 
s
e
n
s
o
r
>

cycles x 100

A

C

Figure III.23: Evolving sensor percentages in simulations with evolution alone (no

learning), with the contact sensors con�guration used with associative reinforce-

ment learning. The B percentage is not shown for clarity (it can be obtained by

subtracting those of A and C from 100%, and its expected optimum is identical to

that of A). Averages and standard errors are computed over di�erent runs.
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Prediction learning

The so-called \Baldwin e�ect" describes an indirect mechanism by which

learning can increase �tness of a population, short of direct, Lamarckian inheri-

tance of the knowledge acquired via learning [7, 182, 17]. It is reasonable to hy-

pothesize, then, that learning may increase selective pressure towards more infor-

mative sensors and consequently reduce the drift observed in the previous section,

facilitating the evolution of informative sensors.

Our �rst choice for an individual adaptation mechanism is reinforcement

learning by sensory prediction. The architecture is that described earlier, and we

use learning rate 0.2. Evolving sensor percentages are plotted in Figure III.24. In-

spection reveals that such sensors induce behaviors performing some approaching;

but as far as combining elements, the evolved behaviors correspond to subopti-

mal strategies. Good approaching strategies can improve �tness only to a limited

extent in our environments, therefore these results basically show that prediction

learning provides no signi�cant advantage over evolution alone, neither for �tness

improvement nor for genetic drift reduction.

This apparently disappointing result is actually of assistance in under-

standing the nature of the information a�orded by ambient sensors and their in-

teraction with the prediction learning algorithm. One di�culty related to these

sensors is the ambiguity of their signals, because the function of the environment

state that they compute integrates signals over the neighborhood and thus is non-

invertible (many-to-one). In this sense, the information they provide is harder to

use than for contact sensors, even though theoretically it allows prediction because

it is less local. Another di�culty related to prediction learning is that the predic-

tion task is not well correlated with the survival/reproduction task. For example,

one reliable prediction in these environments is the absence of C atoms, i.e., a zero

signal from all inputs corresponding to C sensors. Therefore the learning process

drives phenotypes toward behaviors that are not useful because they are based on

blind (C) sensors.
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Figure III.24: Evolved sensor percentages in simulations with ambient sensors,

with and without prediction learning. Averages and standard errors are computed

over di�erent runs.
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Associative reward-penalty

From the result of the previous simulations we certainly cannot draw the

conclusion that learning in general cannot interact constructively with evolution,

but rather the observation that ambient sensory prediction is not the appropriate

cue for our experiment in internalization. Therefore we need another learning algo-

rithm, with the same motivation as for prediction learning: to determine whether

the Baldwin e�ect can facilitate the evolution of informative sensors. However, we

seek a reinforcement signal better correlated with the �tness of the survival task.

For this we turn to the CRBP algorithm, as described earlier.

A number of authors have explored the use of associative reinforcement

learning in conjunction with neural networks, genetic algorithms, and arti�cial

life [1, 186, 2]. Let us use instantaneous energy changes as the reinforcement

signal, as discussed in Chapter II. Energy's direct correlation with LEE's local

�tness should provide agents with appropriate cues to be internalized for evolving

e�cient sensors.

Going back to the simpler architecture with only contact and gut sensors,

the only actions that determine �tness are those choosing whether or not to move

forward when a food is sensed by the contact sensor, based on the gut content.

Therefore weights are updated only immediately after actions catalyzing reactions.4

Figures III.23 and III.25 show the results of adapting sensors with evolu-

tion alone and with associative reinforcement learning, respectively. A signi�cant

reduction in drift and increased selective pressure toward informative sensors (e.g.,

against C sensors) is observed in the simulations with learning. This reects the

fact that in a greater fraction of the runs the population converges to full informa-

tion sensors (approximately 50% A, 50% B, and no C) and optimal behaviors. The

result supports our hypothesis that the Baldwin e�ect can facilitate the evolution

of sensors, if the appropriate environmental cues are internalized.

4Learning rate 0.1.
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Figure III.25: Evolving sensors using evolution and associative reinforcement learn-

ing. Learned network weights are not transmitted genetically, yet learning provides

additional selective pressure in favor of optimal sensors. Averages and standard

errors are computed over di�erent runs.
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III.E.2 Evolving maturation age

To many computational modelers using neural networks as models of

learning, it is second-nature to provide as much training experience as possible,

since almost always this leads to increased performance. But when these neural

nets are used in conjunction with genetic algorithms as biologically realistic models

of the evolution of learning individuals, it is necessary to consider the problem as it

occurs in \�rst Nature:" Is the increased time required by extended training worth

the evolutionary costs of providing it? The fact that many organisms spend their

prolonged immaturity as part of family units that can | potentially | shape the

experience of the learning juvenile in predictable, heritable ways makes the role

of the learning period especially important as one begins to contemplate proto-

cultural e�ects on cognitive development. In the last experiment of this chapter

we address restricted versions of these questions, focusing exclusively on imitative

types of learning between parent and child.

In the study of the evolution and adaptation of life history traits in ani-

mals, the commonly accepted theory states that any particular trait accomplishes

a trade-o� between the di�erent selective pressures acting simultaneously upon the

phenotypic variants of that trait. One such trait that is central in behavioral and

developmental psychology as well as in theoretical biology is the age at which an in-

dividual reaches reproductive maturity, or maturation age. The selective pressures

concerning the evolution of age at maturity considered in theoretical biology are the

adaptive costs and bene�ts associated with anticipating or delaying maturation.

Typically, the costs of delayed maturation include: (i) lower population reproduc-

tive �tness due to longer generation time; (ii) lower individual reproductive �tness

due to decreased probability to reach the mature stage; and (iii) parenthood cost

due to longer immature period requiring parental care. Conversely, the bene�ts of

delayed maturation typically include: (i) higher fecundity of the parent who can

grow for a longer time and better endure the reproductive e�ort; and (ii) lower

instantaneous juvenile death rates due to better quality of o�spring or parental
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care [168].

Ecological �eld studies attempting to quantify the magnitude of selective

pressures toward delayed maturation necessarily focus on easily measurable life

traits, such as body size and weight. On the other hand, animal and human

psychology studies concerned with social cognition emphasize the improvement of

o�spring phenotypes taking place through cultural learning. It would be desirable

to be able to quantitatively correlate such behavioral advantages with life history

models of delayed maturation. However, the di�culty in measuring phenotypic

traits associated with behavioral development, necessary to apply analytical trade-

o� models, causes any behavioral bene�t of delayed maturity to be neglected in

studies of the evolution of maturation.

We propose to use LEE to model the advantage of parental care as the

only bene�t of delayed maturation. Lower death rates may result from an improve-

ment of phenotypic behavior before the adult stage is reached. In the model, this

improvement is acquired by the o�spring through learning by imitation of its par-

ent. Notice that it makes sense to model learning only before maturation, because

parents must act as teachers to their immature o�spring. Johnston [76] has asso-

ciated learning with immaturity in the study of costs and bene�ts of phenotypic

plasticity as a life history trait. While it is not our intention to propose imitation

as a universal mechanism for cultural transmission, Tomasello et al. [178] identify

imitative learning as the �rst of the three forms in which cultural learning man-

ifests itself during ontogeny. Therefore, we use imitation to model one possible

mechanism by which parents may confer a cultural advantage to their immature

o�spring.

Experimental setting

We illustrate quantitative evidence in support of the hypothesis that the

�tness improvement of phenotypes by means of their learned behavior plays an

important role in the evolution of maturation age. We simulate the evolution of
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Figure III.26: Imitative learning architecture. The o�spring sits on the parent's

shoulders, experiencing the same sensory inputs and being trained to imitate the

parent's motor responses.

age at maturity as a genotypic trait regulating the duration of phenotypic learning

by imitation. The model exhibits all of the costs of delayed maturation enumerated

above. We hypothesize that the ability to learn imitated behaviors is adaptive, and

hence expect that there be selective pressure toward delayed maturation to allow

such learning to occur.

In this experiment agents have three ambient sensors, two with a range of

3 oriented to the sides of the organism, and one with a range of 5 oriented straight

ahead. There is also one contact sensor. The motor system is made of a binary

motor controlled by two binary output units. The neural net connecting sensors

to motors has a single hidden layer with seven units. The environment has one

element type (cf. Equation III.15 in Section III.C).
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To study maturation age, the life of organisms is divided into two distinct

stages separated by an \age of maturity" represented by the value of a new gene,

called am. Values of am are between zero (no immaturity) and the age at death

(no maturity). During its immature phase, an organism di�ers in exactly two

respects from its mature form. First, the immature phenotype is not allowed

to reproduce. Its energy at birth is conserved until maturity, and its moving

costs are entirely transferred to its parent. Second, juveniles undergo a process

of learning by imitation. The details of this construction are suggested by Figure

III.26. Parent and child experience identical input stimuli from the world, but the

output computed by the parent's neural net is used to determine both organisms'

movement. The motor units of the parent's network are also used as training for

the child, based on which error signals are generated and weights are updated by

error back-propagation.5 Our metaphor for this stage is to think of the o�spring as

being carried on the shoulders of its parent. When an organism reaches age am it

detaches from the parent and becomes an adult, normal member of the population.

Let us review the way in which the three costs of delayed maturation

are modeled. First, longer generation time is implicit in the LEE model: longer

immature stages correspond to shorter times in which o�spring can be generated.

Second, increasing the immature stage decreases the probability to reach maturity,

due to the constant expected probability of death of the parent per life cycle. When

a parent dies, its \orphan" immature o�spring are dropped into the environment

before becoming adults. An orphan cannot move until it reaches its mature age,

but may run out of energy and die before becoming adult. The probability of

survival to mature age is higher the closer to maturation the o�spring is when the

parent dies. The third cost of the immature stage is associated with parental care:

a parent pays an additional energy toll equal to the cost of a move for each o�spring

it carries on its shoulders. Energy is still conserved, since the immature o�spring

5The learning rate is set to a high value (0.8) because the networks of immature organisms
are give a relatively short training experience (the duration of the immaturity stage) [16].



125

incur no living costs as long as they are carried on their parents' shoulders.

Learning is the only bene�t of delayed maturity in our model. Thus if a

delay of maturation age is observed in simulations, it can only be attributed to the

advantage provided by learned behaviors. Note that this bene�t is conferred upon

the o�spring and not the parent. In evolutionary ecology, similar bene�ts for the

o�spring are mainly attributed to morphologic development, such as o�spring size.

The bene�t modeled here is less explicit because mediated through the behavior

of the o�spring: juvenile mortality can be decreased thanks to the experience

accumulated by o�spring during their immature life stage, by way of parental

imitation.

The am gene is allowed to evolve, being selected together with the rest of

the organisms' genotypes. It may be mutated (with probability 0.1) at reproduc-

tion by a random additive deviate uniformly distributed in the interval [�am;+am].

Negative values are clamped to am = 0. Connection weights are mutated with

probability 0.15 by random additive deviates uniformly distributed in the range

[�2:5;+2:5].

Results

Simulations are run for 150,000 cycles. In Figure III.27 population size

as a function of time is plotted for two single runs in which am is held at the

constant values 0 (no immaturity) and 100 cycles, respectively. The �rst case

(am = 0) provides a baseline with neither the costs nor advantages of an immature

period. The observable increase in population corresponds to an improvement in

the approaching behaviors of the organisms, due to the evolution of their network

weights. The second case (am = 100) gives us a measure of the magnitude of

the cost of delayed maturation: this is large enough to drive the population to

extinction in less than 25,000 cycles. Thus we expect strong selective pressure

against delayed maturation. The expected size of a population of agents with

random behaviors (from Equation III.15) is also shown for comparison.
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Figure III.27: Population size for di�erent �xed ages at maturity. Data are col-

lected form two single simulation runs. Extinction occurs in the case of non-zero

maturation age. \Random walk" refers to the random behavior of Equation III.15.

At the beginning of the simulations, a large amount of environmental resources re-

sults in an exponential peak in population size (not shown in the plot for clarity).

Then density dependence sets in.
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Figure III.28: Population size with evolving maturation age gene. The case with

learning from imitation results in faster �tness improvement. Averages and stan-

dard errors are computed over repeated simulation runs.

In order to study the evolution of age at maturity, the next experiments

add am to the genome of the evolving organisms. The population is initialized with

am uniformly distributed over the interval [0; 100]. Figure III.28 shows the popu-

lation sizes for two populations, one in which imitative learning is enabled during

the immature phase and one in which it is not. In both cases, after the initial

stochastic uctuations, the populations are able to evolve individuals with behav-

iors signi�cantly better adapted than random. However, with imitative learning,

the evolution of good approaching behaviors is signi�cantly accelerated.

Figure III.29 plots the population's average value for the evolved am gene

in the two experiments of Figure III.28, again with and without imitative learn-

ing, respectively. In the absence of learning, other costs of immaturity dominate

and am rapidly evolves to zero. When the young are also allowed to learn via

imitation, however, a signi�cant delay in the extinction of the immature phase is
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Figure III.29: Evolution of the maturation age gene. When imitation occurs, mat-

uration is delayed noticeably; the disappearance of immaturity (due to genetic

assimilation) is also delayed evolutionarily. Averages and standard errors are com-

puted over repeated runs.

observed. It is important to note that this is an evolutionary delay experienced by

the species, not to be confused with the developmental delay controlled by the am

and experienced by individuals. It is also important to recognize that the inclusion

of imitative learning does not keep am from becoming zero; it only prolongs this

process.

In summary, the delay observed represents evidence that there is a trade-

o� between costs and advantages of delayed maturation. This trade-o� is quan-

titatively estimated by the value | slightly above 50 cycles | around which the

population's average maturation age oscillates initially (see Figure III.29). Since

in this model the only advantage can be that of o�spring learning via parental im-

itation, we conclude that cultural transmission of adapted behaviors is one of the

evolutionary factors creating selective pressure in favor of longer immature stages.
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Discussion

The role learning and other forms of phenotypic plasticity can play in

accelerating evolutionary change is increasingly well explored. The Baldwin e�ect,

as discussed in Section III.E.1, has come to describe any mechanism by which a

learner, prohibited from encoding the consequences of learning directly onto the

genome (as Lamarck proposed), can nevertheless enjoy a selective advantage as

a direct consequence of its learning [7, 182, 17]. The ability of an organism to

adapt within its lifetime towards bene�cial characteristics of its environment (i.e.,

learn) increases the probability that other genetic traits serendipitously correlated

with this same bene�t will increase in frequency. A range of evidence for this im-

portant, albeit subtle connection between learning and evolution has been found

by a number of investigators using computer simulations [66, 14, 2, 59, 138]. The

above results are consistent with these accounts. The learning organisms' ability to

explore a range of behavioral strategies within their lifetimes means that the evo-

lutionary process is capable of exploiting much more information about adaptively

favorable characteristics of the environment.

But if learning by imitation during immaturity provides selective pressure

toward delayed maturation, why does am eventually converge to zero, as shown

in the last phase of its evolutionary course in Figure III.29? The Baldwin e�ect

gives us a simple interpretation of this fact as well. During the juvenile period,

modi�cations that learning causes upon the phenotype are eventually re-discovered

by the evolutionary process and thereby a�ect the genotype. Once this happens,

learning is no longer useful because o�spring at birth are already capable of the

behaviors that in earlier generations they could only acquire by imitating their

parents. Therefore learning no longer confers an advantage to immature o�spring.

The costs of delayed maturation remain the same, and the missing bene�t causes

the immature period to disappear. This phenomenon is called genetic assimila-

tion. Its occurrence in the above experiment is con�rmed by the strong positive

correlation observed between evolved values of am and two indicators of behavior
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quality: (i) the amount of change per unit time undergone by neural net weights

as a result of learning; and (ii) the fraction of optimal moves made by new-borns.

Learning by imitation is a relatively simple paradigm within which we

have been able to model the costs of delayed maturity on both mature organisms

(parents) and immature ones (o�spring). The adaptive advantage of transferring a

parent's experience onto its o�spring by \carrying them on its shoulders" has been

shown to be large enough to permit a signi�cant delay in maturation age, at least

until the adaptive behaviors are transferred to the genotypes of the population via

the Baldwin e�ect. Our data, therefore, supports behavioral and cultural models

of maturation age as a life history trait. Since imitation seems to be a very basic

form of cultural transmission in social animals, this result not surprisingly points

to one account for the long immaturity stages in these species. Clearly, many other

factors determine the trade-o� for optimal age at maturity, but critical data about

cultural learning are available for only a very few species, e.g., apes and humans

[178]. We hope our results stimulate �eld studies aimed at providing experimental

evidence for (or against!) the behavioral bene�ts of delayed maturation illustrated

here.



Chapter IV

Adaptive Information Agents

The trend of the recent years in distributed information environments

is a good example of the life-like complexity that we expect to observe in most

aspects of information and computational science. The explosion of the Web and

electronic mail, multiplying the number of information providers and consumers

many times over and bringing the Internet inside the average home, has created

formidable new opportunities and challenges in almost every area of computer and

information science.

In an e�ort to address such problems, researchers in arti�cial intelligence

and information retrieval have already been successful in developing agent-based

techniques to automate many tedious tasks and facilitate the management of the

growing amounts of information ooding users. But the work has just begun.

There is still much need for tools to assist users in ways that scale with the growth

of the Web, and adapt to both the personal preferences of the user and the changes

in user and environmental conditions.

Learning and other forms of adaptation are essential for situated and

autonomous agents. A situated agent is a system whose performance is charac-

terized by a tight coupling with an external environment [79]. The environment

is unpredictable with certainty by the agent, both because it has a dynamic na-

ture, changing with time and locations, and because the agents perception of the

131
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environment is mediated by a sensory apparatus that may be noisy, incomplete,

inconsistent, and/or unreliable. An autonomous agent is a system that must per-

form, on behalf of the user, some task whose solution is not completely speci�ed a

priori [104]. The agent must autonomously make some choices based on context,

i.e., its perception of conditions judged relevant to the problem. Therefore both

situated and autonomous agents must learn some of the regularities about their op-

erating environments and adapt their behaviors to perform their tasks successfully

[105].

The situation is not unlike the one faced by ecologies of organisms adapt-

ing in natural environments. The capabilities of such natural agents illustrated

in Chapter III | local adaptation, internalization of environmental signals, dis-

tributed control, integration of externally driven and endogenous behaviors, etc.

| represent desirable goals for the next generation of autonomous, intelligent,

distributed, adaptive, arti�cial agents. This chapter focuses on the applications of

local selection and internalization algorithms, inspired by the arti�cial life mod-

els discussed in the previous chapters, to the search and retrieval of information

distributed across networked environments.

IV.A Background: Information systems and

agents

IV.A.1 Machine learning

We have shown in Chapter II that evolutionary algorithms based on lo-

cal selection are not suitable in every domain (e.g., combinatorial optimization).

However, distributed search in networked environments is a multimodal problem

that presents many of the characteristics making it an ideal target for such an ap-

proach. This task requires a heterogeneous cover of the search space rather than

a convergence to the perceived global optimum. Indeed it can easily be cast into
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the graph search framework discussed in Section II.E.1, in which local selection

algorithms have proven very e�ective.

There is plenty of data available on-line, and although it may be noisy

and inconsistent compared with manually constructed relevance assessments, adap-

tive algorithms must take advantage of what is cheap and realistic in the actual

search environment [171]. Neural networks have been used to learn probability

distributions for text retrieval by logistic regression [134].

If relevance assessments from the user are available, active learning should

take advantage of them because it has been shown that they can considerably im-

prove the performance of retrieval systems [92]. This suggests the integration of

unsupervised adaptation with \adaptation by examples," driven by relevance feed-

back. Users need not interact directly with agents (especially if these are executing

on remote hosts); the environmental model behind local selection allows relevance

feedback to interact asynchronously with mobile agents. Relevance feedback is a

sel�sh process from the user's standpoint [171], but it provides agents with modi-

�ed rewards that can improve on their models of relevance and therefore on their

performance.

Large, distributed text collections are a typical example of massive data

sets that challenge machine learning techniques due to their huge feature space di-

mensionality [93]. Feature selection techniques are often suggested to deal with the

curse of dimensionality [18, 143], although the unsupervised case remains largely

unaddressed. In distributed applications where agents are situated in temporally

or spatially local portions of heterogeneous or dynamic environments, feature se-

lection should be strongly context-dependent.

IV.A.2 Information retrieval

Unsupervised learning has been applied extensively in information re-

trieval, especially for automatic classi�cation and clustering [179, 159]. Typically,

the model of the document collection is global and static. Any two documents
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are assumed to reside on the same physical locations (disk, LAN, or server) or in

locations with equivalent access costs. Further, a documents is not expected to

change over time. Therefore locality (temporal and spatial context) is neither a

concern nor an asset. Whatever the goal (classi�cation, clustering, ranking), the

learned strategy is supposed to be equally applicable to the whole collection.

Hypertext brings a new dimension to text classi�cation, as non-local fea-

tures (links) may extend the local (words) context and consequently reduce the

descriptive power of the text local to any single documents. For example, a docu-

ment may consist of a list of links to other sources, or be broken into many smaller

documents (sections). These issues are just beginning to be taken into account to

improve classi�cation performance [27].

Relevance feedback also belongs to the mainstream of text retrieval re-

search, as a way to estimate word probability distributions through supervised

learning [145, 165]. Again, the use of users' relevance assessments is traditionally

disjoint from local context, although it can exploit a personal context, for example

to adjust ranking functions or make suggestions based on user preferences and in-

terest pro�les. Relevance feedback is also typically used to select word features for

query expansion [158, 61]. But when space, time, and user needs constitute highly

dynamic and heterogeneous contexts, no query expansion is necessarily appropriate

everywhere or forever.

In general, there is a need to address some of the new challenges posed

by text classi�cation to machine learning, especially the need to extend informa-

tion retrieval to deal with time-varying documents and user needs [93] and with

large, dynamic, and heterogeneous collections such as the Web [94]. On-line search

makes the classi�cation problem both simpler and harder: simpler, because there

are only two classes (relevant and irrelevant with respect to the current query); and

harder, because the relevant class can be heterogeneous (as for long-standing user

pro�les) and because class membership can change over time with the user's shift-

ing interests. We must consider both of these aspects as assets in the construction
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of an agent-based retrieval system.

IV.A.3 Search engines

Exploiting the proven techniques of information retrieval, search engines

have followed the growth of the Web and provided users with much needed assis-

tance in their attempts to locate an retrieve information from the Web. Search

engines have continued to grow in size, e�ciency, performance, and diversity of

services o�ered. Their success is attested by both their multiplication and popu-

larity.

The model behind search engines draws e�ciency by processing the in-

formation in some collection of documents once, producing an index, and then

amortizing the cost of such processing over a large number of queries which access

the same index. The index is basically an inverted �le that maps each word in

the collection to the set of documents containing that word. Additional processing

is normally involved by performance-improving steps such as the removal of noise

words, the conation of words via stemming and/or the use of thesauri, and the

use of the word weighting schemes.

This model, which is the source of search engines' success, is also in our

opinion the cause of their limitations. In fact it assumes that the collection is static,

as was the case for earlier information retrieval systems. In the case of the Web, the

collection is highly dynamic, with new documents being added, deleted, changed,

and moved all the time. Indexes are thus reduced to \snapshots" of the Web.

They are continuously updated by crawlers that exhaustively visit and periodically

revisit every Web page. At any given time an index will be somewhat inaccurate

(e.g., contain stale information about recently deleted or moved documents) and

somewhat incomplete (e.g., missing information about recently added or changed

documents).

A recent study by Lawrence and Giles [89] con�rms these observations

on the limited coverage and recency of the data in any search engine's index. The
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best coverage achieved among the six most popular search engines was estimated

to be around 34% of the Web's indexable pages. A signi�cant portion of the

information stored by these search engines was also found to be stale, as attested

by the fraction (up to 5%) of broken links, i.e., pages deleted or moved since they

had been indexed.

These problems, compounded by the huge size of the Web, hinder search

engines' capability to satisfy user queries. Users are often faced with very large hit

lists, low recall (fraction of relevant pages that are retrieved), even lower precision

(fraction of retrieved pages that are relevant), and stale information. These factors

make it necessary for users to invest signi�cant time in manually browsing the

neighborhoods of (some subset of) the hit list.

A way to partially address the indexing problems posed by the size and

dynamic nature of the Web is by decentralizing the index-building process. Divid-

ing the task into localized indexing, performed by a set of gatherers, and centralized

searching, performed by a set of brokers, has been suggested since the early days

of the Web by the Harvest project [21].

A step toward enriching search engines with topological information about

linkage to achieve better precision has been suggested by the CLEVER1 group at

IBM Almaden Research Labs. The idea is to use hyperlinks to construct \hub"

and \authority" nodes from the Web graph and it has proven e�ective in improving

document retrieval and classi�cation performance[28, 27].

IV.A.4 Information agents

Autonomous agents, or semi-intelligent programs making automatic deci-

sions on behalf of the user, are viewed by many as a way of decreasing the amount of

human-computer interaction necessary to manage the increasing amount of infor-

mation available on-line [106]. Many such software agents, more or less intelligent

1Formerly known as HITS project.
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and more or less autonomous, have been developed in the recent years. The great

majority of them su�er from a common limitation: their reliance on search engines.

The limited coverage and recency of search engines cannot be overcome by agents

whose search process consists in submitting queries to search engines. However,

many agents partially improve on the quality of any search engine's performance

by submitting queries to many di�erent engines simultaneously. This technique,

originally called metasearch [129], has indeed proven to increase recall signi�cantly

[180].

Typical examples of agents who rely on search engines to �nd informa-

tion on behalf of the users are homepage or paper �nders. CiteSeer [19] is an

autonomous Web agent for automatic retrieval and identi�cation of publications.

Ahoy [163] is a homepage �nder based on metasearch engine plus some heuristic

local search. WebFind [135] is a similar locator of scienti�c papers, but it relies on

a di�erent information repository (net�nd) to bootstrap its heuristic search. To

be sure, agents like CiteSeer, Ahoy and WebFind do perform some autonomous

search from the pages returned by their initial sources, but this is limited to the

servers of their starting points.

A di�erent class of agents are designed to learn user interests from brows-

ing for recommendations purposes. Syskill & Webert [142] is a system that iden-

ti�es interesting Web sites from large domain-speci�c link lists by learning to rate

them based on relevance feedback. WebWatcher [3, 74] is a tour guide agent

that learns from experience of multiple users by looking over their shoulders while

browsing. Then it provides users with suggestions about what links to follow next.

Similarly, Letizia [95] is an autonomous interface agent that assists the user in

browsing the Web by performing look-ahead searches and making real-time rec-

ommendations for nearby pages that might interest the user. WebMate [29] assists

browsing by learning user preferences in multiple domains, and assists searching

by automatic keyword extraction for query re�nement. All these agents learn to

predict an objective function on-line; they can also track time-varying user pref-
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erences. However, they need supervision from the user in order to work; no truly

autonomous search is possible.

Fab [6] and Amalthaea [136] are multi-agent adaptive �ltering systems

inspired by genetic algorithms, arti�cial life, and market models. Term weighting

and relevance feedback are used to adapt a matching between a set of discovery

agents (typically search engine parasites) and a set of user pro�les (corresponding

to single- or multiple-user interests). These systems can learn to divide the problem

into simpler subproblems, dealing with the heterogeneous and dynamic pro�les

associated with long-standing queries. However they share the weak points of other

agents who perform no active autonomous search, and therefore cannot improve

on the limitations of the metasearch engines they exploit.

Fish Search [35] is a search system inspired by some of the same ideas from

arti�cial life that motivated the research in this thesis. Fish Search is based on a

population of search agents who browse the Web autonomously, driven by an inter-

nally generated energy measure based on relevance estimations. The population is

client-based, and uses a centralized cache for e�ciency. While we believe that the

algorithm could be extended to allow for distributed implementations, each agent

cannot internalize local context. This is due to a �xed, nonadaptive strategy: a

mixture of depth-�rst-, breadth-�rst-, and best-�rst-search, with user-determined

depth and breadth cuto� levels. One di�culty of the Fish Search approach is in

determining appropriate cuto� levels a priori, possibly resulting in load-unfriendly

search behaviors. Therefore Fish Search su�ers from limitations that are in a sense

opposite to those of all the previously discussed agents; all it does is search, but it

cannot adapt to user or environmental conditions.

IV.B Limitations of the state of the art

When the Web was much smaller than today, it was already clear that the

fast pace of development in network technology would make the �eld of distributed



139

information sources an ideal area of applications for autonomous, intelligent agents.

In the words of Booker:

Intelligent agents are needed to interact with humans in virtual en-
vironments, provide adaptive interfaces that model user's preferences,
and locate information on wide-area computer networks. In applica-
tions such as these, an agent must interact with \environments" in
which spatial structure is not necessarily the most signi�cant basis for
organizing behavior. Modeling the kinds of intelligent behaviors needed
for these environments is an exciting challenge [. . . ]2

We have seen in the previous section only a small fraction of the many

(more or less aware) answers to Booker's call. Yet there are still many limitations

in the ways that the current state of the art applications use the concepts of agents

and environments. We believe that the ideas illustrated in the previous chapters

of this thesis can provide us with new directions to improve on such limitations.

Agents must be endowed with mechanisms to exploit the spatial, temporal, and

personal dimensions of their environments. Before discussing how local selection

and internalization can move us closer to this goal, let us look more closely at some

of the problems that we consider most urgent, and why we believe they should be

viewed as assets rather than limitations | or as computer scientists would say, as

features rather than bugs.

IV.B.1 Linkage topology

Indexing can be described as the process of building a statistical topology

over a document space. In the vector representation [159], documents and queries

are viewed as vectors in very large feature spaces where each word corresponds to

a dimension. Two documents are similar, or a document is relevant with respect

to a query, if the angle between their respective vectors is small. A search engine

will show similar documents next to each other, e�ectively creating on the y a

2From Booker [20], pages 1{2.



140

topology based on their word statistics.3 This is a very useful model because the

user can immediately make assumptions about the contents of retrieved documents,

for example about the fact that they contain certain words.

However, networked information environments may contain additional

structure information, which can be used to provide browsing users (or agents)

with helpful cues. Here we focus on linkage information that is at the basis of

hypertext markup languages such as those used in the Web. One cannot submit

to search engines queries like \Give me all documents k links away from this one,"

because the space to store such information would scale exponentially with k.4

While much linkage information is lost in the construction of indexes, it

is there to be exploited by browsing users, who in fact navigate from document

to document following links. We have argued that linkage topology | the spatial

structure in which two documents are as far from each other as the number of links

that must be traversed to go from one to the other | is indeed a very precious asset

on the Web. Even in unstructured portions of the Web, authors tend to cluster

documents about related topics by letting them point to each other via links, as

con�rmed by bibliometric studies of the Web [88]. Such linkage topology is useful

inasmuch as browsers have a better-than-random expectation that following links

can provide them with guidance | if this were not the case, browsing would be a

waste of time!

Let us quantify the notion of value added by linkage topology. We have

conjectured that such value can be captured by the extent to which linkage topol-

ogy \preserves" relevance (with respect to some query). Imagine a browsing user

or agent following a random walk strategy.5 De�ne R as the conditional probabil-

ity that following a random link from the current document will lead to a relevant

3Similar arguments apply toWeb information retrieval systems based on other representations.

4Several search engines now allow such queries for k = 1.

5We make the conservative assumption of random walk to obtain a lower bound for the value
added of linkage topology.
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document, given that the current document is relevant. We call R relevance au-

tocorrelation. And de�ne G as the probability that any document is relevant, or

equivalently the fraction of relevant documents. We callG generality (of the query)

[157].

For the random browser, the probability of �nding a relevant document

is given by

� = �R + (1� �)G;

where � is the probability that the current document is relevant. If linkage topol-

ogy has any value for the random browser, then browsing will lead to relevant

documents with higher than random frequency. In order for this to occur the

inequality

�=G > 1

must hold, which upon simplifying for � is equivalent to

R=G > 1: (IV.1)

Conjecture IV.1 is equivalent to the cluster hypothesis [179] under a hypertext

derived de�nition of association. We can then express the linkage topology value

added by de�ning the quantity

� � R=G� 1:

As a reality check, we have measured � for a few queries from a cou-

ple of search engines [114]. Relevance autocorrelation statistics were collected by

counting the fraction of links, from documents in each relevant set, pointing back

to documents in the set. Generality statistics were collected by normalizing the

size of the relevant sets by the size of the collections. These are quite gross mea-

surements, since they are based on the assumption that the sets returned by the

search engines correspond to the relevant sets. But a retrieved set can be viewed as

the relevant set for some query. Our conjecture about the value added by linkage

topology is con�rmed by the large values of � shown in Table IV.1. Note that
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Query � (Lycos) � (Britannica Online)
color 2:8� 103 6:1� 103

blindness 2:1� 104 1:1� 102

photography 3:5� 103 1:8� 102

einstein 5:2� 103 6:2� 101

bach 7:5� 103 7:8� 101

carcinoma 1:5� 104 1:3� 102

cinema 1:1� 103 1:0� 102

internet 4:0� 103 7:2� 101

evolution selection 2:3� 103 1:8� 101

red wine 2:5� 104 3:7� 101

Mean (9� 3)� 103 (7� 6)� 102

Table IV.1: Measures of � for ten queries submitted to Lycos [101] and Britan-

nica Online [41]. The minimum score parameter used for Lycos was 0.1. Only

full (absolute) HTTP references were considered for Lycos, and only Micropaedia

and Macropaedia article references for EB. Multiple-term queries represent AND

Boolean searches.

even though the documents in the Encyclopaedia Britannica are better structured

(higher R), the value of linkage topology is driven down by the smaller size of the

collection (higher G). Yet, all � values are signi�cantly positive.

Linkage topology also has been considered by others in the context of the

Web, with di�erent motivations. Links have been used for enhancing relevance

judgments [144, 184], incorporated into query formulation to improve searching

[4, 166], and exploited to determine \hub" and \authority" pages for document

categorization and discovery [28, 27].

If links constitute useful cues for navigation, they can be exploited by

autonomous browsing agents just as they are by browsing users | indeed, even

the dumbest of agents (random walkers) can exploit linkage information. In fact,

the random walk model may turn out to be more than just a lower bound for

browsing behavior. Huberman et al. [72] argue that it is a very good predictive

model of human browsing behavior. They assume that the value (e.g., relevance)
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of pages along the browsing path of a user follows a random walk of the form:

VL = VL�1 + �L (IV.2)

where L is the depth along the path and �L is a random variable drawn from

a normal distribution @(�; �2). Equation IV.2 is a stronger than Equation IV.1,

since it implies a positive correlation between VL and VL�1 (equivalent to our

relevance autocorrelation) for any � > 0. Huberman et al. �nd that the inverse-

gaussian distribution of sur�ng depth (clicks per Web site) derived from Equation

IV.2 accurately �ts experimental data on sur�ng behavior, and therefore they

call such a distribution a universal law of sur�ng. Although our conjecture on

the value of linkage topology is more modest, it �nds strong support in these

�ndings. Furthermore, the random-walk assumption implies normative models for

constructing browsing agents who make optimal local decisions about when to

stop sur�ng, in much the same way in which real options are evaluated in �nancial

markets [100]. Thus we feel justi�ed in our con�dence that browsing is not an

unreasonable task for autonomous agents.

Note that the information encoded by statistical (word) versus linkage

topologies are quite distinct, and arguably complimentary. Links, constructed

manually to point from one page to another, reect an author's attempts to relate

his/her writings to others'. Word topology is an epiphenomenal consequence of

word vocabulary choices made by many authors, across many pages. By making

agents perceptually sensitive to word topology features and capable of acting by

traversing link topology, we expect to �nd interesting relationships between the

purposeful, manual linkage of Web authors and the words they use.

IV.B.2 Scalability

As we discussed in Section IV.A.3, scalability is a major issue limiting

the e�ectiveness of search engines. The factors contributing to the problem are the

large size of the Web, its rapid growth rate, and its highly dynamic nature. The
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Figure IV.1: Scatter plot of coverage versus recency in six popular search engines:

Alta Vista, HotBot, Northern Lights, Excite, InfoSeek, and Lycos. Data from

Lawrence and Giles [89]. Linear regression is also shown. The correlation coe�cient

is -0.7.

scalability problem is quanti�ed in the recent study by Lawrence and Giles [89].

Their estimates of the current size (over 320 million pages) and growth rate (1000%

in a few years) of the Web attest to this environment's increasing complexity.

Lawrence and Giles also measure the coverage and recency of six among

the most popular search engines. The coverage achieved by these search engines

varies approximately between 3% and 34% of the Web's indexable pages. A higher

bound on recency was obtained by counting the fraction of returned hits corre-

sponding to broken URLs, i.e., pages that have been deleted or moved.6 Among

the search engines considered, the one with highest coverage is also the one with

lowest recency, and viceversa | the engine with lowest coverage has the least bro-

6URLs with changed content do not appear broken, therefore this method only detects part
of the stale information in an index.
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ken links. This trade-o� between coverage and recency is illustrated in Figure IV.1.

Coverage and recency are indeed anti-correlated, as expected. Increasing the cover-

age of an index, given some limited bandwidth resource, imposes a search engine's

crawler to \spread itself thin" and update pages less frequently, thus increasing

the amount of stale information in the index.

In order to keep indexes as up-to-date as possible, crawlers have to revisit

documents often to see if they have been changed, moved, or deleted. Further,

crawlers have to try to exhaustively visit every new document to keep indexes as

complete as possible. Such crawler behaviors impose signi�cant loads on the net,

as documents must be examined periodically. Heuristics are used to estimate how

frequently a document is changed and needs to be revisited, but the accuracy of

such statistics is highly volatile. The network load scales as n=� , where n is the

number of documents in the Web and � if the time scale of the index, i.e. the

mean time between visits to the same document. The longer � , the more stale

information in the index. If q is the number of queries answered by the search

engine per unit time, then the amortized cost of a query scales as n=q� .

Agents searching the Web on-line do not have a scale problem because

they search through the current environment and therefore do not run into stale

information. On the other hand, they are of course less e�cient than search engines

because they cannot amortize the cost of a search over many queries. Assuming

that users may be willing to cope with the longer wait for certain queries that

search engines cannot answer satisfactorily, one might ask, What is the impact of

on-line search agents on network load?

In our opinion, because of the scale e�ect, making an index less up-to-date

can free up su�cient network resources to completely absorb the impact of on-line

searches. Consider increasing the � of a search engine by a factor of (1+�), allowing

the information in the index to become correspondingly more stale. Maintaining

a constant amortized cost per query, we could now re�ne the results of each query
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with an on-line search using an amount of network resources scaling as

n

q�
�

n

q�(1 + �)
�

n

q�

�

1 + �
:

As an example, imagine visiting 100 Web pages on-line for each query, and accept-

ing � = 1 (bringing � , say, from one to two weeks). This could be achieved without

impacting network load by satisfying the condition n=q� = 200. Assuming q� (the

number of queries posed over a constant time interval) is a constant, the current

growth of the Web assures that the condition will be met very soon. For Alta

Vista, at the time of this writing we estimate n=q� � 5 [39]; even at a conserva-

tive growth rate of a doubling per year, the condition would be met within about

5 years.7 This simple argument, in our opinion, shifts the question: we should

not ask what is the network impact of on-line search agents, but rather, What

� achieves an appropriate balance between the network loads imposed by search

engines crawlers and on-line agents?

IV.B.3 Context

All samples of language, including the documents indexed by Web search

engines, depend heavily on shared context for comprehension. A document's au-

thor makes assumptions, often tacit, about their intended audience and when this

document appears in a \traditional" medium (conference proceedings, academic

journal, etc.) it is likely that typical readers will understand it as intended. But

one of the many things the Web changes is the huge new audience it brings for

documents, many of whom will not share the author's intended context.

These vague linguistic concerns have concrete manifestation in the global

word frequency statistics collected by Web search engines. The utility of an index

term, as a discriminator of relevant from irrelevant items, can become a muddy

7If we consider the coverage factor of 3 due to the discrepancy between the n of the search
engine and the actual size of the Web, the condition will be met even sooner.
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average of its application across multiple, distinct sub-corpora within which these

words have more focused meaning [170, 169].

Situated agents, on the other hand, can rely on local coherence in keyword

distributions by exploiting their structural (link) proximity. Over time, agents

may come to internalize the features that best describe the current documents

and discriminate between relevant and other pages. For example, agents browsing

through pages about \rock climbing" and \rock'n'roll" should attribute di�erent

weights to the word \rock" depending on whether the query they are trying to

satisfy is about music or sports. Where an agent is situated in the environment

provides it with the local context within which to analyze word meanings | a

structured, situated approach to polisemy. Conversely, the words that surround

links in a document provide an agent with valuable information to evaluate links

and thus guide its path decisions | a statistical approach to action selection.

Indexes are also constructed without knowledge of the particular queries

that they will answer, or of the users posing them. A universal ranking scheme

may be generally good but probably will not be the best for each speci�c query or

particular user. Conversely, personal agents may adapt to a user's interests, even

if they change over time. They can internalize the user's preferences with respect

to, e.g., vocabulary, word disambiguation, and relative importance of terms.

Localization and personalization are two aspects of context usage that

search engines cannot provide. Situated, personal agents can capture features of

local and personal contexts and adapt to them to improve on their search perfor-

mance. The following sections discuss how to construct such agents.

IV.C InfoSpiders overview

Let us operationalize the ideas discussed in the previous section into an

agent framework. Our goal is to address the limitations of search engines with

respect to scalability, personalization, and personalization, by an agent-based al-



148

gorithm and adaptive representation taking advantage of both the statistical and

linkage topology of the distributed information environment. We have argued that

such agents must be autonomous, on-line, situated, personal browsers.

Our approach to achieve these properties is based on the idea of a multi-

agent system. The problem is decomposed into simpler subproblems, each ad-

dressed by one of many simple agents performing simple operations. The divide-

and-conquer philosophy drives this view. Each agent will \live" browsing from

document to document on-line, making autonomous decisions about which links

to follow, and adjusting its strategy to both local context and the personal pref-

erences of the user. Population-wide dynamics will bias the search toward more

promising areas.

In this framework, both individual agents and populations must adapt.

Individually learned solutions (e.g., by reinforcement learning) cannot capture

global features about the search space or the user. They cannot \cover" hetero-

geneous solutions without complicated internal models of the environment; such

models would make the learning problem more di�cult. On the other hand, if

we allowed for population-based adaptation alone (e.g., by an evolutionary algo-

rithm), the system might be prone to premature convergence. Genetically evolved

solutions would also reect an inappropriate coarseness of scale, due to individual

agents' incapability to learn during their life. These are the same reasons that

have motivated the hybridization of genetic algorithms with local search [63], and

reect the general problem of machine learning techniques in environments with

very large feature space dimensionalities (cf. Section IV.A.1).

The approach and methods introduced above have been applied in the

construction of populations of adaptive information agents. The InfoSpiders sys-

tem was implemented to test the feasibility, e�ciency, and performance of adap-

tive, on-line, browsing, situated, personal agents in the Web. In this section we

describe the InfoSpiders implementation and in particular discuss the details of

the distributed evolutionary algorithm and agent representation used.
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IV.C.1 Algorithm

InfoSpiders search on-line for information relevant to the user, by making

autonomous decisions about what links to follow. How long should an agent live

before being evaluated? What global decisions can be made about which agents

should die and which should reproduce, in order to bias the search optimally? No

answer to these questions would appear satisfactory. Fortunately, the local selec-

tion algorithm provides us with ways to remain agnostic about these questions.

The InfoSpiders algorithm follows closely the model of Figure II.1. It is repro-

duced in Figure IV.2, for ease of reference and with more details about the speci�c

InfoSpiders implementation of the local selection algorithm.

A central part of the system is the use of relevance feedback. The user

may assess the relevance of (some of) the documents visited by InfoSpiders up

to a certain point. Such relevance assessments take place asynchronously with

respect to the on-line search, and alter the subsequent behaviors of agents on-line

by changing the energy landscape of the environment. The process is akin to the

replenishment of environmental resources; the user interacts with the environment

to bias the search process. Let us �rst overview the algorithm at a high level, while

representation-dependent details will be given in the next subsections.

The user initially provides a list of keywords and a list of starting points,

in the form of a bookmark �le. This list could typically be obtained by consulting

a search engine. First, the population is initialized by pre-fetching the starting

documents. Each agent is \positioned" at one of these document and given a ran-

dom behavior (depending on the representation of agents) and an initial reservoir

of energy.

In step (1), an agent \senses" its local neighborhood by analyzing the

text of the document where it is currently situated. This way, the relevance of

all neighboring documents | those pointed to by the hyperlinks in the current

document | is estimated. Based on these link relevance estimates, in step (2)

the agent \moves" by choosing and following one of the links from the current
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initialize p0 agents, each with energy E = �
2

while there are alive agents:

for each alive agent a:

1. pick link from current document

2. fetch new document D

3. Ea  Ea � c(D) + e(D)

4. Q-learn with reinforcement signal e(D)

5. selection:

if (Ea � �)

a0  mutate(recombine(clone(a)))

Ea0  Ea=2

Ea  Ea=2

else if (Ea � 0)

die(a)

end

end

process optional relevance feedback from user

end

Figure IV.2: High-level pseudocode of the InfoSpiders evolutionary algorithm for

distributed information agents.

document.

In step (3), the agent's energy is updated. Energy is needed in order to

survive and move, i.e., continue to visit documents on behalf of the user. Agents

are rewarded with energy if the visited documents appear to be relevant. The e()

function is used by an agent to evaluate the relevance of documents. There are

two energy \sources" in the system. If a document D had previously been visited

and assessed by the user, the user's assessment is used to compute e(D) (e(D) > 0

or e(D) < 0); if the document had not been visited before, its relevance must be

estimated to compute e(D). If D had previously been visited but not assessed,

e(D) = 0 because that resource has been consumed.

This mechanism is implemented via a cache, which also speeds up the

process by minimizing duplicate transfers of documents. While in the current,

client-based implementation of InfoSpiders this poses no problem, caching is a

form of communications and thus a bottleneck for the performance of distributed
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agents. In a distributed implementation, we imagine that agent will have local

caches. When using the current implementation to simulate the performance of

distributed InfoSpiders, we will simply assume that no cache is used, setting the

cache size to zero.

There is only one energy \sink" in the system: agents are charged energy

costs for the network load incurred by transferring documents. The cost function

c() should depend on used resources, for example transfer latency or document

size. For simplicity we will assume a constant cost for accessing any new doc-

ument, and a (possibly smaller) constant cost for accessing the cache; this way

stationary behaviors, such as going back and forth between a pair of documents,

are discouraged.

Just as for graph search, instantaneous changes of energy are used, in

step (4), as reward/penalty signals. This way agents adapt during their lifetime

by Q-learning [183]. This adaptive process allows an agent to modify its behavior

based on prior experience, by learning to predict the best links to follow.

In step (5), an agent may be killed or be selected for reproduction. In the

latter case o�spring are recombined by the use of one of two types of crossover.

In local crossover, an agent can only recombine with agents residing on the same

document, if there are any.8 In panmictic crossover, an agent may recombine with

any other agent in the population; in this case the mate is selected at random.

Local crossover is appropriate for distributed InfoSpiders to minimize communica-

tion overhead and will be used in the remainder of the chapter. O�spring are also

mutated, providing the variation necessary for adapting agents by way of evolution.

Finally, the user provides the system with relevance feedback. This pro-

cess is optional and can take place without direct on-line interactions with the

agents. The user may assess any visited document D with feedback �(D) 2

f�1; 0;+1g. All the words in the document are automatically assessed by updating

8A more sensible alternative for distributed implementations would be to allow crossover
between agents situated on the same server.
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a \feedback list" of encountered words. Each word in this list, k, is associated with

an integer count !k that is initialized with 0 and updated each time any document

is assessed by the user:

8k 2 D : !k  !k + �(D):

The word feedback list is maintained to keep a global pro�le of which words are

relevant to the user.

The output of the algorithm is a ux of links to document, ranked accord-

ing to some relevance estimate | modulo relevance assessments by the user. The

algorithm stops when the population goes extinct for lack of relevant information

resources, or if it is terminated by the user.

IV.C.2 Agent architecture

Figure IV.3 illustrates the architecture of each InfoSpiders agent. The

agent interacts with the information environment, that consists of the actual net-

worked collection (the Web) plus data kept on local disks (e.g., relevance feedback

data and cache �les). The user interacts with the environment by accessing data

on the local client (current status of a search) and on the Web (viewing a document

suggested by agents) and by making relevance assessments that are saved locally

on the client and will be accessed by agents as they subsequently report to the

user/client. There is no direct interaction between the user and the agents after

the initial submission of the query and starting points.

The InfoSpiders prototype consists of over 14,000 lines of C code and runs

on UNIX and MacOS platforms. The Web interface is based on the W3C library

[181]. Agents employ standard information retrieval tools such as a �lter for noise

words [48] and a stemmer based on Porter's algorithm [49]. Finally, agents store

an e�cient representation of visited documents in the shared cache on the client

machine. Each document is represented by a list of links and stemmed keywords. If

the cache reaches its size limit, the LRU (least recently used) replacement strategy

is used. Figure IV.4 shows a screen shot of the graphical user interface for the
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Figure IV.3: Architecture of an InfoSpiders agent.
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Macintosh version of InfoSpiders.

IV.C.3 Adaptive agent representation

Figure IV.3 highlights the central dependence of the InfoSpiders system

on agent representation. We now describe the adaptive representation of InfoSpi-

ders. This consists of the genotype, that determines the behavior of an agent and

is passed on to o�spring at reproduction; and of the actual mechanisms by which

the genotype is used for implementing search strategies.

The �rst component of an agent's genotype consists of the parameter

� 2 <+. Roughly, it represents the degree to which an agent trusts the descriptions

that a page contains about its outgoing links. � is initialized with �0.

Each agent's genotype also contains a list of keywords, initialized with

the query terms. Since feed-forward neural nets are a general, versatile model of

adaptive functions, we use them as a standard computation device | just as we

did in LEE. Therefore genotypes also comprise a vector or real-valued weights,

initialized randomly with uniform distribution in a small interval [�w0;+w0]. The

keywords represent an agent's opinion of what terms best discriminate documents

relevant to the user from the rest. The weights represent the interactions of such

terms with respect to relevance. The neural net has a real-valued input for each

keyword in its genotype and a single output unit. We want to allow the inputs

and activation values of the network to take negative values, corresponding to the

possibly negative correlations perceived between terms and relevance. For this

reason the network uses the hyperbolic tangent as its squashing function, with

inputs and activation values in [�1;+1]. Let us now see how the di�erent parts of

the system are implemented, based on the this representation.

Action Selection

An agent performs action selection by �rst computing the relevance esti-

mates for each link from the current document. This is done by feeding into the
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Figure IV.4: Screen shot of the InfoSpiders window on a Macintosh. The search

environment in this example is the one used for evaluation purposes (see Section

IV.D.2).
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Figure IV.5: How an agent estimates each link from the current document. For

each link in the document, each input of the neural net is computed by counting the

document words matching the keyword corresponding to that input, with weights

that decay with distance from the link.

agent's neural net activity corresponding to the small set of (genetically speci�ed)

keywords to which it is sensitive. Each input unit of the neural net receives a

weighted count of the frequency with which the keyword occurs in the vicinity

of the link to be traversed. In the experiments reported here, we use a distance

weighting function which is biased towards keyword occurrences most close to the

link in question.

More speci�cally, for link l and for each keyword k, the neural net receives

input:

ink;l =
X

i:dist(ki;l)��

1

dist(ki; l)

where ki is the ith occurrence of k in D and dist(ki; l) is a simple count of other,

intervening links (up to a maximum window size of �� links away). The neural
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network then sums activity across all of its inputs; each unit j computes activation

tanh(bj +
X
k

wjkin
l
k)

, where bj is its bias term, wjk are its incoming weights, and inlk its inputs from

the lower layer. The output of the network is the activation of the output unit,

�l. The process is illustrated in Figure IV.5 and is repeated for each link in the

current document. Then, the agent uses a stochastic selector to pick a link with

probability distribution:

Pr[l] =
e��lP

l02D e��l0
:

Relevance estimation and feedback

After a link has been chosen and the corresponding new document has

been visited, the agent has to determine the corresponding energy gain and loss;

both depend on whether or not the document had been visited previously. If the

document is in the cache, and the user has assessed its relevance, then the agent

receives energy e(D) = �(D), after which �(D) decays according to

�(D) �(D)

where the decay factor  is a parameter. This is done to avoid a population

explosion due to non-conserved energy from relevance feedback.

If the user provided the system with relevance assessments, the word

feedback list represents a pro�le of his/her interests that is both more current and

more accurate than the original query. This list is used to estimate the relevance of

previously unvisited or not assessed documents, so that the corresponding energy

intake can be computed:

e(D) = tanh

0
@X
k2D

freq(k;D) � Ik

1
A

where freq(k;D) is the frequency of term k in document D normalized by docu-

ment size, and Ik is the weight of term k based on relevance feedback. The latter
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is an extension of the TFIDF (term frequency-inverse document frequency) index

weighting scheme. If k is not in the word feedback list, then Ik = 0. The list is

initialized with the query terms and weights I = 1. It changes only if the user

provides InfoSpiders with relevance feedback. In this case the weights are updated

according to the rule:

Ik  � � Ik + (1� �) � !k �
�
1 + log

�
1

Ck

��
(IV.3)

where Ck is the fraction of cache documents containing k and � is an inertia term.

Such a weighting formula di�ers from more traditional TFIDF schemes

[164] in at least two respects. First, it is not aimed at weighting terms based on

how well they describe documents, but rather on how well they correlate with

relevance. Therefore it employs algebraic term frequencies to account for negative

contributions from documents that contain the term but are anti-correlated with

relevance. Second, it is computed on-line and therefore uses document frequencies

based on the contents of the cache rather than the entire collection. The hyperbolic

tangent is used to normalize energy intakes into the appropriate range [�1;+1] |

the same range as the corresponding neural net's prediction.

Q-learning

The agent then compares the relevance (assessed or estimated) of the

current document with the estimate of the link that led to it. By using the con-

nectionist version of Q-learning [96], the neural net can be trained on-line to predict

values of links based on local context. After the agent visits document D, e(D) is

used as an internally generated reinforcement signal to compute a teaching error:

�(D) = e(D) + � �max
l2D
f�lg � �D (IV.4)

where � is a future discount factor and �D the prediction from the link that was fol-

lowed to get to D. The neural net's weights are then updated by back-propagation

of error [153]. Learned changes to the weights are \Lamarckian" in that they are

inherited by o�spring at reproduction.
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In the absence of relevance assessments, this reinforcement learning al-

gorithm is unsupervised because it is the environment that provides the reinforce-

ment signal e(D). However, relevance feedback alters the function e() under the

supervision of the user, who modi�es the environment by providing examples of

relevance. Therefore InfoSpiders integrate unsupervised and supervised adaptation

in the form of evolution, Q-learning, and relevance feedback.

Reproduction

At reproduction, the o�spring clone is recombined with another agent.

Two-point crossover is applied to the keywords of the clone, so that a subset of

the mate's keywords is spliced into the o�spring's keyword vector.

Then the o�spring is mutated to provide the evolutionary algorithm with

the necessary power of exploration. If a0 is an o�spring of a:

�a0  U [�a(1� ��); �a(1 + ��)]

where �� 2 [0; 1] is a parameter and U is the uniform distribution. The values of

� are clipped to �max to maintain some exploratory behavior. The neural net is

mutated by adding random noise to a fraction �w of the weights. For each network

connection i:

wi
a0  U [wi

a(1� �w); w
i
a(1 + �w)]:

The keyword vector is mutated with probability �k. The least useful

(discriminating) term argmink2a0(jIkj) is replaced by a term expected to better

justify the agent's performance with respect to the user assessments. In order to

keep any single keyword from taking over the whole genotype, this mutation is also

stochastic; a new term is selected with probability distribution

Pr[k] / freq(k;D) � �<1(jIkj+ �) (IV.5)

�<1(x) �

8><
>:
x if x < 1

1 otherwise
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where D is the document of birth and � 2 [0; 1] is a parameter. The �rst factor

captures the local context by selecting a word that well describes the document that

led to the energy increase resulting in the reproduction. The second factor captures

the global context set by the user by selecting a word that well discriminates the

user's preferences. The parameter � regulates the amount of supervised (small �)

versus unsupervised (large �) keyword mutation; if � = 0, only keywords important

to the user can be internalized, while if � > 0 new keywords can be internalized

based on local environmental context alone. Learning will take care of adjusting

the neural net weights to the new keyword.

The evolution of keyword representations via local selection, mutation

and crossover implements a form of selective query expansion. Based on relevance

feedback and local context, the query adapts over time and across di�erent places.

The population of agents embodies a distributed, heterogeneous model of relevance

that may comprise many di�erent and possibly inconsistent features. But each

agent focuses on a small set of features, maintaining a well-de�ned model that

remains manageable in the face of the huge feature dimensionality of the search

space.

IV.D Experimental setting

IV.D.1 Algorithmic parameters

In Section IV.E we report on results of experiments and analysis aimed

at evaluating the performance of InfoSpiders in responding to queries by searching

the Web on-line. Unless otherwise stated, the algorithmic parameters discussed in

Section IV.C will take the default values shown in Table IV.2.

Unless otherwise stated, we will assume that the cache size is large enough

to contain all the visited documents. The cost charged for visiting a document

will depend on the experiment. For the sequential InfoSpiders implementation,

The cost is higher for new documents (cn) than for cached documents (co). For
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Parameter Default Description

p0 21 Initial population size
� 2.0 Reproduction threshold
cn 0.01 Energy cost per new document
co 0.0001 Energy cost per cached document
cd 0.001 Energy cost per document (distributed case)
Tmax 10,000 Max number of new pages visited per query
�0 2.0 Initial �
�� 0.5 � mutation range
�max 5.0 Max �
� 5 Half-size of link estimation sliding window
�k 0.5 Keyword mutation rate
� 0 Unsupervised keyword mutation factor

Nlayers 2 Neural net layers (excluding inputs)
w0 0.5 Initial neural net weight range
�w 0.2 Neural net weight mutation rate
�w 0.25 Neural net weight mutations range
� 0.05 Neural net Q-learning rate
� 0.5 Q-learning discounting factor
� 0.5 Inertia of word feedback weights
 0.9 Decay factor for document assessments

Fmax 64 Max number of word feedback entries
jCj Tmax Max cache size
 0.1 Recall level for search length measurements

Table IV.2: InfoSpiders parameter descriptions and values for the experiments

reported in Section IV.E.
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distributed InfoSpiders (see Section IV.E.1) there is no di�erence; in this case the

cost cd is such that an agent can visit 1000 irrelevant documents before it will run

out of energy. For each query, the search is stopped when the population meets

the  success criterion explained in Section IV.E.1 (unless it goes extinct or visits

a total of Tmax new pages).

IV.D.2 EB search graph

The di�culty of evaluating on-line retrieval systems stems from multiple

factors. The lack of a ranking function over all documents (in particular those

not seen) is one problem that will be addressed in the next subsection. A more

general di�culty is the lack of queries with available well-de�ned relevant sets. To

overcome this problem, a special chunk of the Web has been selected as a test

environment [170, 169]: the Encyclopaedia Britannica (EB) [41]. The advantage is

that we can make use of readily available relevant sets of articles associated with

a large number of queries.

Here we use a subset of the EB corpus, corresponding to the \Human

Society" topic subtree | roughly one tenth of the whole collection. This environ-

ment is made of N = 19427 documents, organized in a hypertext graph. 7859 of

these pages are articles constituting the Micropaedia. These, together with 10585

Index pages, form a connected graph. The remaining 983 nodes form a hierarchical

topical tree, called Propaedia. Figure IV.6 show the in- and out-degree statistics

of the search graph.

Articles are manually classi�ed according to the Propaedia hierarchy by

skilled human editors. By using the title of any Propaedia node as a query we

have access to all the articles classi�ed into that category by the editor, who has

exhaustive knowledge of all the documents in that subject. Therefore we will use

the set of Micropaedia articles associated with the subtree rooted at the query node

as the relevant set corresponding to that query.

Agents are initially placed at the root of the \Human Society" tree. Since
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Social service: 
organized public 

and private 
activities to 

alleviate human 
wants and needs
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Jane

Philanthropic 
foundation

Peace 
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+

Index
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Query

Figure IV.7: Schematic representation of the EB search space for an actual query,

showing the titles of a few relevant articles. The relevant set is depicted in light

gray. The subtree in dark gray is removed from the search space.
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Depth # Queries # Measures hGi Example
1 12 84 0.02 Branches of Private Law,

Substantive and Procedural

2 72 144 0.003 Laws governing economic

transactions

3 100 200 0.002 Law of commercial

transactions

4 100 200 0.001 Principal forms of business

associations

5 12 84 0.0007 State and municipal

corporations, quasi-public

enterprises and utilities

Table IV.3: Propaedia query statistics and examples. Generality statistics do not

account for the removal of relevant Propaedia subtree nodes.

the Propaedia topology is used to de�ne relevance, its \visibility" to agents dur-

ing search would make the problem of navigating through the relevant set quite

easy. Therefore, unless otherwise stated, we remove from the search space all the

Propaedia nodes in the relevant subtree; agents cannot access relevant nodes di-

rectly from the Propaedia, but only from Index or other Micropaedia nodes. This

is illustrated schematically in Figure IV.7 for the example query used in Section

IV.E.2.

Table IV.3 shows some statistics and examples for the queries used in the

experiments of this chapter (unless otherwise stated). Queries corresponding to

nodes at the same depth in the Propaedia tree are grouped together. Queries span

�ve di�erent depths. If d is the depth of a query, the minimal distance from the

staring node (the Human Society root) to the root of the relevant Propaedia subtree

is d+1. However, since the latter is not part of the search graph, the actual shortest

path to a relevant article is at least d+3. Deeper queries are harder for InfoSpiders

because they are less general (lower carrying capacity) and their relevant sets

are farther from the starting point. The number of di�erent queries available

also varies with depth. We selected queries with su�ciently large relevant sets to
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allow for statistically signi�cant performance evaluations (see Section IV.E.1). In

order to decrease standard errors in performance statistics, multiple measurements

are obtained from a single query by restarting the search with di�erent initial

conditions (i.e., di�erent seeds for the random number generator).

IV.E Experiments

Evaluation of a system like InfoSpiders is complex and must be carried

out at di�erent levels. At a high level, we must be con�dent that the system

performs signi�cantly better than simpler strategies against which it can be com-

pared. For this type of macro analysis, we look at the collective performance of the

population as a whole. At a lower level, we want to verify that agents internalize

appropriate cues of their local environments into their behaviors. For this type of

micro analysis, we consider the representations of individual agents.

IV.E.1 Macro analysis

How do we quantitatively evaluate the behavior of the InfoSpiders al-

gorithm on the EB corpus? Since InfoSpiders do not have access to the whole

corpus, but only to the subset of documents they actually visit, they cannot im-

pose a ranking over the whole collection. This makes it impossible to use standard

information retrieval performance analysis methods such as precision-recall curves,

which require rank or similar measures as a control parameter [179].

Another metric lends itself better to assess the performance of on-line

retrieval systems. Search length is normally de�ned as the number of irrelevant

documents that appear, in some ordered list of retrieved documents, in front of

some fraction of the relevant set [31]. We can easily extend this method by imag-

ining that only visited documents appear in the list of retrieved documents, and

that their ordering is given by visit time rather than rank | length then refers to

waiting time. For an on-line retrieval system this means that we only need to wait
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until some fraction  of the relevant set is visited, and count the total number of

documents visited up until that time. Search length is measured when d �G �Ne

relevant articles have been visited (cf. Table IV.2).

Another complication arises due to sequential versus potentially distributed

implementations. In a sequential algorithm, all visited documents are retrieved

from the servers on which they reside and analyzed locally on the client machine.

In this case the central cache helps minimize the number of repeated document

requests over the network. The performance of InfoSpiders will be compared with

two sequential (centralized) algorithms. Like the sequential version of InfoSpiders,

these can also take advantage of a centralized cache. Therefore they will be allowed

to use an arbitrarily long central cache, so that only previously unvisited documents

contribute to the measured search length. This will also be the case for sequential

InfoSpiders.

However, we expect that the InfoSpiders algorithm will be implemented

in a distributed fashion, and therefore can simulate its distributed execution. To

this end, those parts of the system that require communication among agents must

be disallowed, and more speci�cally: the shared access to the global cache, the dif-

ferential costs for new and previously visited documents, and panmictic crossover.

Therefore for (simulated) distributed InfoSpiders we disallow such interactions; we

include each and every document visit into the search length statistics, whether the

agent requests a new document across the network or loads a document from the

cache.9 Agents would then execute in parallel, and search length is given by the

maximum number of documents visited by any agent lineage. This is measured in

the experiments by keeping track of the number of links traversed by each agent,

accumulated over all generations in the agent's ancestry since the start of a run.

Local crossover occurs only if an agent reproduces at a location (document) where

at least one other agent is situated.

9This is a worst-case scenario for InfoSpiders performance, since we can imagine that each
agent could carry along a small local cache.
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Notice that access to relevance feedback information could also be viewed

as a source of indirect communication among agents, which could interfere with

their parallelization potential. However, relevance assessments take place o�-line

and very infrequently from an agent's perspective. That is, their temporal scale is

much longer than that of an agent's interaction with the environment. Therefore

we imagine that agents will access relevance feedback information only when they

periodically report to the client. Based on this assumption, we allow relevance

feedback in distributed InfoSpiders.

InfoSpiders vs. breadth-�rst-search

In the �rst experiment search length is averaged across all queries in the

\Human Society" tree, one run each (rather than multiple runs over the subset

illustrated in Figure IV.3). The performance of sequential InfoSpiders is compared

with that of a simple non-adaptive algorithm, breadth-�rst-search. Due to our

implementation of breadth-�rst-search for this experiment, the search space is

somewhat di�erent than illustrated in Section IV.D.2. Index pages are excluded,

and all Propaedia nodes are included. Breadth-�rst-search only traverses edges in

the Propaedia tree, and stops when it �nds the node corresponding to root of the

relevant set (the query page). InfoSpiders are free to traverse all Propaedia and

Micropaedia pages, but stop when the �rst relevant node is found, whether in the

Propaedia or Micropaedia. Thus the search length corresponds to a recall level of

 = 1=GN (unlike the �xed value of Table IV.2).

InfoSpiders use reinforcement learning, but for a fair comparison no user

feedback is provided. The results are shown in Figure IV.8: the improvement of

InfoSpiders over breadth-�rst-search is as large as one order of magnitude. This

result con�rms that the InfoSpiders approach is viable and suggests comparisons

with more elaborate algorithms than exhaustive search.
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Figure IV.8: Search length of InfoSpiders and breadth-�rst-search for queries at

di�erent depths in the \Human Society" Propaedia category of Encyclopaedia

Britannica. Error bars are standard errors of means over same-depth queries.
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InfoSpiders vs. best-�rst-search

We now want to compare InfoSpiders with a good global search algorithm.

When searching an annotated graph, the optimal strategy is given by the A�

algorithm [156]. However, in the case of the Web there is no admissible heuristic

to apply A�, since the only suitable lower bound on the distance from the closest

relevant node is trivially zero. Therefore A� reduces to best-�rst-search.

InfoSpiders can implement a search strategy similar to best-�rst-search by

evolving high values for the � gene, but only from the local \perspective" of single

agents, rather than with respect to the global search space. Nevertheless, assuming

best-�rst-search as an upper bound for global search algorithms, we compare its

performance with InfoSpiders.

We implemented best-�rst-search by means of a priority queue. Links are

estimated in the same way in which they are by InfoSpiders, but then they are

placed in a global queue, sorted by estimated relevance of the pointed documents;

then documents are visited by following the queued links, in the order determined

by their priority. The length of the priority queue is set equal to the initial size of

the InfoSpiders population, p0.

We have run experiments comparing the search length achieved by best-

�rst-search with that of two variants of distributed InfoSpiders, one without rele-

vance feedback and one with relevance feedback every 50 newly visited documents.

In the latter case assessments of �(D) = 1 are automatically generated for all doc-

uments D visited so far that belong to the editor-de�ned relevant set. Everything

else in the experiment is as described in Section IV.D.

Figure IV.9 shows the percentages of queries successfully completed by

the di�erent algorithms. These are the cases in which a fraction  of the relevant

pages are found within the Tmax limit on visited pages. Non-completed queries

are those for which InfoSpiders run out of time, or go extinct; and for which

priority queue runs out of time, or becomes engulfed in previously visited areas.

As expected, performance degrades for queries of increasing depth. InfoSpiders
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Figure IV.9: Percentage of queries successfully completed by best-�rst-search

(\Priority Queue") and di�erent versions of InfoSpiders.

however tend to have a higher success rate than best-�rst-search, with the exception

of depth 5 for which best-�rst-search does better by 1%. Relevance feedback a�ords

an improvement where unsupervised InfoSpiders fail to achieve 100% completion

rate. This is due to the evolutionary reinforcement provided by relevance feedback:

those agents that are moving in the right direction receive energy boosts and have

a greater chance to reach the relevant clusters.

Figure IV.10 plots search length versus query depth. Search length is

averaged over completed queries at the same depth. As the plots demonstrate,

InfoSpiders' search length increases with depth while the global heuristic does not

show such dependency within the observed depth range. As a result, best-�rst-

search outperforms InfoSpiders for very deep queries. However, in practical cases

we do not expect the search to start too far away from the desired pages thanks

the use of search engines to seed the initial population of InfoSpiders. For the more

realistic queries at lower depths, the distributed nature of InfoSpiders results in a
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Figure IV.10: Performance of InfoSpiders (with and without relevance feedback)

versus best-�rst-search. Error bars correspond to standard errors.

signi�cantly shorter search time than required by best-�rst-search. Figure IV.10

also shows that when user relevance feedback is available it further accelerates

the discovery of relevant documents, by pointing agents in the right direction. The

improvement becomes less signi�cant statistically for deep queries due to the fewer

available measurements.

Population dynamics

Let us now look at the typical population dynamics of InfoSpiders in

response to a single query. This is determined by the carrying capacity of the

networked information environment, that is, by the size of the relevant set for the

given query. Further, the di�erent cost schemes associated with the sequential

and parallel versions of InfoSpiders alter the selective bias of the algorithm and

consequently the collective system behavior and performance. Finally, the size of

the cache also a�ects the energetic balance of the environment. The cache works as
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Figure IV.11: Population dynamics in three runs of sequential and distributed

InfoSpiders with di�erent cost parameters.

the collective memory of sequential InfoSpiders; when the system \forgets" pages

that are replaced in the cache, the e�ect is equivalent to replenishing environmental

resources in the local selection algorithm.

The query we consider is \Social service: organized public and

private activities to alleviate human wants and needs." For the exper-

iments in this subsection we allow all Propaedia nodes to be visited.

To evaluate the e�ect of sequential versus distributed implementations

of InfoSpiders on population dynamics and on performance, we compare three

runs. In the �rst run, sequential InfoSpiders are employed; the ratio of the cost

parameters is set to co=cn = 0:1 (rather than 0.01 as in Table IV.2). In the second

and third run, distributed InfoSpiders are employed; their cost parameter is set to

cd = cn and cd = co in the two cases, respectively. The value of cn is set to 0.02.

Figure IV.11 plots population size as a function of the number of new

pages visited. Predictably, the distributed case with cd = cn has the smallest
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Figure IV.12: Recall in three runs of sequential and distributed InfoSpiders with

di�erent cost parameters.

carrying capacity and corresponds with the earliest extinction. The sequential

case is intermediate because the two costs are charged depending on whether or

not a page is already in the cache. The distributed case with smallest cost cd = co

has largest carrying capacity and no extinction occurs up to time Tmax. Assuming

agents can save state on the servers where the pages reside, so that documents

can yield energy only the �rst time they are visited (the environmental marking

operated by the cache in our simulations), the population would eventually run

out of resources and go extinct in this case as well.

Figure IV.12 shows recall versus new pages visited in the same three runs.

Recall here is the fraction of relevant pages visited up to a point, and can be used

as a measure of performance to be maximized. As the plot illustrates, population

size is not an indicator of performance. Before extinction in the distributed case

with cd = cn, recall does not seem to signi�cantly di�er from the other two cases.

And the distributed case with cd = co, in spite of its surviving population, has
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Figure IV.13: Population dynamics in four runs of sequential InfoSpiders with

di�erent cache sizes.

achieved lower recall than the sequential case. Note, however, that since recall is

normalized by the total number of new pages visited, this measure of performance is

intrinsically sequential | it does not capture the fact that distributed InfoSpiders

can execute in parallel.

To evaluate the e�ect of cache size on population dynamics and on per-

formance, we compare four runs of sequential InfoSpiders with �nite cache size,

rather than e�ectively in�nite cache (as was the case when jCj was set to Tmax).

We let jCj equal 16, 64, 256, and 1024 in the four runs, respectively. The ratio of

the cost parameters is still co=cn = 0:1, but the value of cn is set to 0.01 for this

experiment. Figure IV.13 plots the population dynamics in the four cases. The

population size grows at higher rates for smaller cache sizes, and viceversa. This

is not surprising, because a smaller cache means that pages are replaced | and

therefore resources are e�ectively replenished | more frequently.

As Figure IV.14 shows, the di�erent population growths spurred by the
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Figure IV.14: Recall performance in four runs of sequential InfoSpiders with dif-

ferent cache sizes.

various cache sizes do not necessarily imply any signi�cant di�erence in perfor-

mance. A mere change in growth rate, or in population size, does not alter the

search bias of the population. The situation is equivalent to changing the repro-

duction threshold �, or the cost cn, by some scaling factor. So long as time is

measured sequentially, as for the recall statistics, relevant pages are discovered at

the same rate.

In order for performance to be a�ected by population dynamics, the

search bias of the population must be altered so that certain directions become pre-

ferred over others. This can be achieved for example by relevance feedback. Figure

IV.15 plots population size in two runs of distributed InfoSpiders with cd = 0:002

and in�nite cache size (jCj = Tmax). In one run, no relevance feedback is provided;

in the other, positive relevance assessments are generated automatically, for visited

pages in the relevant set, every 100 newly visited pages. The energy provided by

relevance feedback decays in the latter run with a geometric factor  = 0:5.
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Figure IV.15: Population dynamics in two runs of distributed InfoSpiders with

and without relevance feedback, respectively.
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k Ik
ORGAN 1.0
PUBLIC 1.0
PRIVAT 1.0
SERVIC 1.0
SOCIAL 1.0
HUMAN 1.0
ACTIV 1.0
ALLEVI 1.0

Table IV.4: Default initial word feedback list corresponding to a query.

Figure IV.16 shows that in this case there is not a mere scaling of pop-

ulation growth rate, but a change in performance driven by the bias imposed by

relevance feedback. The user is e�ectively changing the energy landscape and

pushing the population in a preferred direction | one in which agents happen to

�nd more relevant pages.

IV.E.2 Micro analysis

To illustrate how some of the goals that we set out for adaptive infor-

mation agents are achieved by InfoSpiders, let us now look more closely at a few

typical agents adapting within a single search. The query is the same one used to

analyze population dynamics in the previous section; after removal of stop words

and stemming, it results in the keyword vector shown in Table IV.4.

To simplify the analysis during this example run we use simple percep-

trons to represent agent behaviors, so that an agent is completely described by

a vector of 8 keywords and a vector of 9 weights (one per keyword plus a bias

term), plus the � parameter. We set � = 1, use panmictic crossover, provide the

population with relevance feedback every 50 new pages, and run the search until

the population had visited Tmax = 1000 new pages.
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Spatial context

How do InfoSpiders internalize environmental word features that are spa-

tially local (in the sense of linkage topology)? Can they adapt to the spatial context

in which they evolve? To answer these questions consider two agents, A and B,

born at the same time but in di�erent places. More precisely, A was born at time

554 in the sequential execution of the algorithm, i.e., after the population had

collectively visited 554 new pages. B was born at time 580; A and B were e�ec-

tively contemporaries because they had the same temporal context | the global

information resulting from the relevance assessments of time 550, partially shown

in Table IV.5.

As Table IV.5 shows, the original query words were displaced from their

top positions and replaced by new terms. For example, PRIVAT and ALLEVI had

relatively low weights, while FOUNDAT and RED appeared to have the highest corre-

lation with relevance feedback at this time.

A's and B's keyword vectors are shown in Table IV.6. In the course

of the evolution leading to A and B through their ancestors, some query terms

were lost from both genotypes. A was a third generation agent; its parent lost

ALLEVI through a mutation in favor of HULL. At A's birth, PRIVAT was mutated

into TH. B was a second generation agent; at its birth, both ALLEVI and PRIVAT

were replaced by HULL and ADDAM, respectively, via mutation and crossover. These

keyword vectors demonstrate how environmental features correlated with relevance

were internalized into the agents' behaviors.

The di�erence between A and B can be attributed to their evolutionary

adaptation to spatially local context. A and B were born at documentsDA andDB,

respectively, whose word frequency distributions are partly shown in Table IV.7.

TH represented well the place where A was born, being the second most frequent

term there; and ADDAM represented well the place where B was born, being the

third most frequent term there. By internalizing these words, the two situated

agents are better suited to their respective spatial contexts.
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rank new k Ik
1 ? FOUNDAT 0.335
2 ? RED 0.310
3 ? MISSION 0.249
4 SOCIAL 0.223
5 ? CROSS 0.197
6 ? HULL 0.184
7 ? HOUS 0.183
8 ORGAN 0.161

. . .
15 SERVIC 0.114
16 ACTIV 0.112

. . .
23 ? TH 0.094

. . .
30 PUBLIC 0.087

. . .
32 ? ADDAM 0.079

. . .
37 HUMAN 0.075

. . .
41 PRIVAT 0.067

. . .
44 ALLEVI 0.065

. . .

Table IV.5: Part of the word feedback list and weights at time 550. Here and in

Table IV.8, stars mark new terms not present in the original query. Note that TH

does not correspond to the article \the," which is a noise word and thus removed

from all documents; rather, it corresponds to the \th" used for ordinal numbers

and often associated with centuries.
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A B
ORGAN ORGAN

PUBLIC PUBLIC

TH ADDAM

SERVIC SERVIC

SOCIAL SOCIAL

HUMAN HUMAN

ACTIV ACTIV

HULL HULL

Table IV.6: Keyword vectors for agents A and B.

rankDA
k freq(k;DA) rankDB

k freq(k;DB)
1 WORKHOUS 0.076 1 HOUS 0.043
2 TH 0.038 1 HULL 0.043
2 POOR 0.038 3 ADDAM 0.025
4 SOCIAL 0.030 . . .
4 CENTURI 0.030 38 AMERICAN 0.004

. . . . . .

Table IV.7: Most frequent terms in the documents where agents A and B were

born. Word frequencies are normalized by the total number of words in each

document.
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rank new k Ik
1 SERVIC 0.273
2 SOCIAL 0.268
3 ORGAN 0.238
4 ? FOUNDAT 0.152
5 ? NATION 0.148
6 PUBLIC 0.138

. . .
12 ACTIV 0.118

. . .
15 ? HULL 0.110

. . .
17 PRIVAT 0.098

. . .
25 HUMAN 0.087

. . .
31 ALLEVI 0.080

. . .
35 ? AMERICAN 0.077

. . .
56 ? ADDAM 0.053

. . .

Table IV.8: Part of the word feedback list and weights at time 950.

Temporal context

Let us now consider adaptation along the temporal dimension. How do

InfoSpiders internalize features appropriate for their time? Can they capture the

temporal context in which they evolve? To answer these questions consider again

two agents: our acquaintance, B and a third agent, C. They were born in the same

place (DB; see Table IV.7) but at a di�erent times; more precisely, C was born at

time 965, and therefore its temporal context was the global information resulting

from the relevance assessments of time 950, partially shown in Table IV.8. B's

temporal context was given in Table IV.5.

Let us make a few observations about Table IV.8. After more relevant

documents were discovered, the original query terms gained weight, with four of
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B C
ORGAN ORGAN

PUBLIC PUBLIC

ADDAM PRIVAT

SERVIC SERVIC

SOCIAL SOCIAL

HUMAN AMERICAN

ACTIV ACTIV

HULL HULL

Table IV.9: Keyword vectors for agents B (from Table IV.6) and C.

them in the top six positions. Their relative positions also changed; for example,

PRIVAT surpassed HUMAN. Other words lost importance; among those with a pres-

ence in B's and C's birth page DB, both HULL and ADDAM decreased their weights,

but while the former maintained a relatively strong position, the latter did not.

Finally, some new terms made their �rst appearance in the list, such as AMERICAN

that was also represented in DB but was not present in the word feedback list at

time 550.

Table IV.9 shows the di�erences between the representations of agents B

and C. Such di�erences reect the times in which these agents were born. When B

was born, ADDAM appeared better correlated with relevance then PRIVAT, while the

converse was true when C was born. The internalization of the two terms by B and

C, respectively, is consistent with this change in temporal context. Furthermore,

at the time of C's birth AMERICAN had a small but positive global weight, so that

the presence of this term in DB could be picked up by C | something impossible

for B due to the term's absence in the earlier word feedback list. By evolving

to internalize these words, the two agents adapted to their respective temporal

contexts; since the change over time was caused by the user's relevance assessments,

these agents e�ectively achieved personalization.
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k wD
k wE

k

ORGAN 0.22 -0.14
PUBLIC 0.75 -0.42
PRIVAT 0.20 0.81
SERVIC 0.22 -0.05
SOCIAL -0.01 -0.21
HUMAN 0.07 -0.03
ACTIV 0.12 0.27
ALLEVI 0.29 -0.08
Bias 0.02 0.41

Table IV.10: Learned perceptron weights for agents D and E.

Experience

Another question is: Can InfoSpiders internalize their local context over

smaller spatial scales and shorter time scales, during their lives? To answer, con-

sider two agents, D and E, in the initial population. Both lived until the end of the

run and were successful (with three and nine o�spring, respectively). Although D

and E were born at the same time and in the same place (the root of the \Human

Society" tree), they searched through di�erent paths and therefore had di�erent

life experiences.

Table IV.10 shows the weight vectors of D's and E's neural nets at the

end of the run. The weights were adapted via Q-learning so that each agent

would be able to estimate document relevance across links. For example, it is

clear that the strategy learned by D paid special attention to PUBLIC. On the

contrary, E's predictions were anticorrelated with the presence of PUBLIC. This

demonstrates that the local contexts experienced by D and E during their lives were

quite divergent with respect to this word. Through reinforcement learning, the

two agents were able to internalize into their neural nets the perceived correlations

between environmental features and relevance.
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Unsupervised query expansion

In all experiments described up to this point, the keywords that agents

are allowed to internalize into their representation are limited by the word feedback

list. This is due to the fact that � = 0 in Equation IV.5. The result is that the

query expansion process is supervised; a new keyword cannot be internalized unless

it is contained in some document assessed (positively or negatively) by the user.

All other terms have Ik = 0 and thus their probability of being selected during

mutation is also zero.

For the last InfoSpiders demonstration we set � = 1 to explore the oppo-

site extreme, i.e., completely unsupervised query expansion. The distribution of

Equation IV.5 reduces in this case to

Pr[k] / freq(k;D):

This way, word cues can be internalized from environmental interaction alone, even

in the total absence of relevance feedback. At reproduction, a term in the o�spring

genotype can be mutated into a term that is frequent in the document where

the o�spring is born. Since reproduction occurs after a positive energy intake,

this query expansion mechanism is driven by the detection of correlation between

environmental signals (words) and �tness (estimated or assessed relevance).

As an illustration, Figures IV.17 and IV.18 list the results of the key-

word mutation and crossover operators in the course of a single InfoSpiders run.

These are some of the reproduction events occurred until Tmax = 5000 pages are

visited. All other parameters are as in the run of the previous subsections, with

the exceptions that the cache is limited to jCj = 1000, no relevance feedback is

provided, and of course � = 1. Thus this search is completely unsupervised, and

energy comes only from relevance estimates based on the query words (Table IV.4).

The mutation and crossover operations shown are taken from the InfoSpiders log

�le. Figures IV.17 and IV.18 give a sense of the diversity that quickly propagates

through the population based on the di�erent pages visited by each agent.
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/ref/ <- /activ/

/sponsor/ <- /social/

/legion/ <- /allevi/

/role/ <- /human/

/und/ <- /activ/

/associ/ <- /social/

/agre/ <- /ref/

/embol/ <- /role/

/religi/ <- /social/

/death/ <- /allevi/

/govern/ <- /allevi/

/chang/ <- /human/

/human/ <- /allevi/

/yaqui/ <- /chang/

/urban/ <- /allevi/

/variou/ <- /associ/

/social/ <- /yaqui/

/law/ <- /ref/

/class/ <- /law/

/subsidi/ <- /chang/

/characterist/ <- /public/

/human/ <- /social/

/chang/ <- /chang/

/societi/ <- /allevi/

/ideologi/ <- /chang/

/psychologi/ <- /activ/

/type/ <- /chang/

/concept/ <- /allevi/

/sanction/ <- /govern/

/human/ <- /variou/

/televis/ <- /activ/

/public/ <- /human/

/organ/ <- /activ/

/relat/ <- /und/

/centuri/ <- /chang/

/spanish/ <- /educ/

/schwinghosen/ <- /chang/

/chang/ <- /social/

/ag/ <- /class/

/languag/ <- /ref/

/polit/ <- /activ/

/relat/ <- /allevi/

/path/ <- /role/

/consider/ <- /death/

/elit/ <- /psychologi/

/quaker/ <- /human/

/human/ <- /allevi/

/subject/ <- /servic/

/centuri/ <- /allevi/

/design/ <- /activ/

/concept/ <- /human/

/april/ <- /allevi/

/societi/ <- /allevi/

/statu/ <- /human/

/futur/ <- /distribut/

/minor/ <- /subject/

/trade/ <- /allevi/

/human/ <- /societi/

/organ/ <- /legion/

/activ/ <- /allevi/

/rise/ <- /type/

/structur/ <- /centuri/

/polygami/ <- /intern/

/cereal/ <- /concept/

/educ/ <- /law/

/polish/ <- /activ/

/lee/ <- /chang/

/devolut/ <- /class/

/steril/ <- /govern/

/societi/ <- /minor/

/cold/ <- /social/

/urban/ <- /ag/

/institut/ <- /allevi/

/price/ <- /cold/

/human/ <- /role/

/languag/ <- /allevi/

/polyolefin/ <- /agre/

/structur/ <- /statu/

/daili/ <- /elit/

/parkinson/ <- /human/

/relationship/ <- /futur/

/rate/ <- /lee/

/outer/ <- /social/

/trelawni/ <- /societi/

/ku/ <- /chang/

/bank/ <- /privat/

/master/ <- /activ/

/rural/ <- /ref/

/abip/ <- /und/

/law/ <- /religi/

Figure IV.17: Mutations during a 5000-page run with unsupervised query expan-

sion
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/public privat servic associ human/ <- /public privat servic social human/

/servic social yaqui/ <- /servic social human/

/social human ref/ <- /social human activ/

/privat servic social chang/ <- /privat servic social human/

/public privat servic variou/ <- /public privat servic social/

/servic social human activ/ <- /servic social human law/

/activ/ <- /type/

/organ public privat servic social/ <- /organ public privat servic sponsor/

/subject human human/ <- /servic quaker quaker/

/human human/ <- /social human/

/servic social human type/ <- /servic social human organ/

/chang/ <- /activ/

/minor human human/ <- /servic human human/

/organ public privat servic cold/ <- /organ public privat servic social/

/public privat servic social statu/ <- /public privat servic social concept/

/social human/ <- /social subsidi/

Figure IV.18: Recombinations during a 5000-page run with unsupervised query

expansion



Chapter V

Conclusions

In the previous chapters of this thesis we discussed research at the bound-

ary between arti�cial life, adaptive computation, biology, and information systems.

Chapter II focused on the common algorithmic themes that make up the frame-

work for Chapters III and IV. The theoretical and experimental aspects of this

framework have �rst been introduced elsewhere [118, 123].

Chapter III was concerned with the direction of the arti�cial life bridge

going from computational methodologies to exploring questions in biological, evo-

lutionary, and ecological theory. The LEE model was originally presented in a

series of technical reports [115, 116, 112]. The connection between the observed

population dynamics and the carrying capacity of Latent Energy Environments

was discussed in a chapter of the book edited by Belew and Mitchell [119]. The

results outlined in Chapter III are selected from experiments reported in a number

of papers [117, 26, 118].

Chapter IV dealt with the direction of the arti�cial life bridge going

from local selection algorithms, inspired by ecological systems, to applications in

adaptive and autonomous information retrieval, especially in regard to distributed

search over networked information environments. The idea of applying arti�cial

life algorithms to adaptive information agents and the World Wide Web was �rst

introduced when the Web was still in its infancy [128, 124, 113]. The �rst proto-

188
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type of the InfoSpiders system was presented in 1997 [120]. The machine learning

aspects of the algorithm, its later implementations, the distributed aspects of the

approach, and many results outlined in Chapter IV were discussed in the most

recent papers [114, 121, 122].

V.A Discussion of contributions

The �rst contribution of this thesis is an exploration of issues concerning

a tight integration between adaptation at the population level (evolution) and at

the individual level (learning). We have proposed and analyzed the local selection

algorithm as a way to build an evolutionary loop around the same environmental

signal(s) that drive reinforcement learning. This allows one to focus on the roles of

reinforcement learning and evolution as two similar processes, acting at di�erent

temporal and spatial scales by sampling environmental cues over di�erent intervals

| a life cycle or a lifetime.

At the individual level, reinforcement learning biases an agent's behavior

toward actions leading to a better knowledge of the environment and to increased

payo�, or longer survival. At the collective level, reinforcement evolution biases

the population toward sampling areas of the environment that are close to known

resources, by increasing the density of agents near those sources.

The integration of local selection with reinforcement learning is quite

di�erent from hybrid models in which evolution and learning are used together

[14, 16, 63, 87, 147, 86]. Typically, genetic algorithms are used in conjunction

with local search as a way to improve on the evaluation of an individual's �t-

ness. Such models, albeit successful in several domains, beg the question of how to

allocate computational resources between evolving the population and searching

locally around individual genotypes; the answers remain mostly empirical. An-

other major di�erence between the two approaches is that local selection only

requires competition among agents sharing environmental resources, and thus is
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an implicitly distributed algorithm.

As was shown in Chapter II, evolutionary algorithms based on local selec-

tion are not necessarily feasible or appropriate in any problem domain. However,

they are a useful paradigm for distributed agents situated in some (physical or

software) environment.

As a model of ecological adaptation, Latent Energy Environments are

little more than the local selection algorithm in conjunction with a speci�cation for

agents capable of learning during their lifetime (neural nets), and a speci�cation for

a class of physics-grounded environments. The result is the �rst simulation-based

model of ecological processes allowing for the simultaneous study of evolution and

individual plasticity. An immediate consequence of the local selection algorithm

is the emergence of density dependence. We have shown in Chapter III that by

specifying the complexity of an environment we can accurately predict the carrying

capacities corresponding to the range of evolvable behaviors. The individual-based

LEE model is an excellent �t to the analytical model of logistic population growth

used in ecology for similarly density-dependent conditions.

We have reported in Chapter III on the use of LEE to investigate the

coevolution of behaviors and morphology (sensors). This has turned out to be an

unexpectedly di�cult problem due to the interdependence between the neural net

implementing a behavior and the sensory interface producing the information upon

which the behavior must be based. We have shown that, if the cognitive modi�-

cations provided by learning are well correlated with those required for survival in

a particular environment, then phenotypic learning can assist adaptation in that

environment by facilitating the evolution of appropriate genotypes.

The integration between adaptation by reinforcement evolution and learn-

ing was also explored in Chapter IV, in the context of information agents appli-

cations. We have shown how to construct agents who can evolve to exploit global

and local information about the environment in which they are situated, and learn

during their lifetime to adjust their behaviors to best match their local environ-
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mental context. Our evaluation of the InfoSpiders collective performance provides

us with encouraging support for the approach: the population can locate relevant

documents in large distributed corpora faster than exhaustive search. Further-

more, thanks to the local nature of each agent's interactions with the information

environment, distributed InfoSpiders can also beat globally optimum strategies.

The InfoSpiders system also gave us a chance to explore the question of

internalization: How to select among the many environmental cues the ones that

best correlate with �tness or survival? As the LEE experiments on the evolution

of sensors illustrated, the appropriateness of reinforcement signals is crucial in

determining the success of reinforcement learning and evolution.

In the InfoSpiders context, evolution selects words to be internalized into

an agent's representation. These signals then drive the agent's link-following de-

cisions. Finally the agent learns through its lifetime experience to improve its

endogenous estimation function (neural net) to match the evaluation of visited

nodes. The evaluation function depends on the same word cues that can be inter-

nalized by evolution. This closes the loop, and allows the two adaptive processes

to support each other. We have shown in Chapter IV how local selection and

internalization can lead agents to adapt to their local environmental context, over

di�erent spatial and temporal scales.

Another contribution of this thesis was to explore the interactions and

integration of supervised and unsupervised adaptation. Evolution by local selec-

tion and individual learning by sensory prediction, associative reward-penalty, or

Q-learning, are all examples of unsupervised adaptation. Like reinforcement learn-

ing, there may be a weak supervision in the sense that the environment provides

adaptive agents with reinforcement or feedback cues. However, if the agents have

to internalize the appropriate signals, we can consider these mechanisms unsuper-

vised.

In the LEE context, we have considered parental imitation as a form

of supervised learning, although the supervision occurs by evolved individuals
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rather than by the external experimenter. Nevertheless the interaction allowed

for an interesting cost-bene�t analysis of an evolving life-history trait, showing

that behavioral improvements of the immature phenotype may be among the fac-

tors determining the trade-o� between costs and bene�ts of delayed maturation.

The simulations also demonstrated that the Baldwin e�ect can use this extended

window of juvenile plasticity to good evolutionary advantage.

In the InfoSpiders context, we had good reason to exploit a more direct

form of supervised adaptation, or learning from examples. While we don't want

agents who need user feedback in order to function, we certainly want to make use

of the user's relevance assessments if such precious resources are made available.

Relevance feedback was used not only to bias the population toward promising

areas, but also to improve on the relevance estimation function and to enable the

internalization of local features into agents' adaptive behaviors. As a consequence,

the performance of InfoSpiders received a boost from the synergy between unsu-

pervised learning and relevance feedback.

The interplay between local selection, internalization, Q-learning, and

relevance feedback provided us with a way to address another problem in this

domain: Making the learning problem manageable in the face of the huge feature

space dimensionality (easily as large as 105 words). This goal was achieved by

selective query expansion | another way to describe internalization. The micro

analysis in Chapter IV has enabled us to determine that single agents can in

fact select the important local features of their environment, while the collective

ecology captures a more heterogeneous snapshot of what features best correlate

with user relevance. Agent representations and strategies evolve with time and

change over an agent's lifetime; they are di�erent from agent to agent depending

on the temporal and spatial contexts in which they were born, and on what parts

of the environment each has experienced. Therefore we expect this approach to be

robust in the presence of time-varying documents and user pro�les.

Finally, we have discussed the importance of an accurate account of the
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environment, its complexity, and its topology, in determining the adaptive behav-

iors that may emerge. The simple demonstrations of this principle outlined in

this thesis could be seen as quantitative explorations of the thesis put forward by

Godfrey-Smith [52]: \The function of cognition is to enable the agent to deal with

environmental complexity."

More speci�cally, in our LEE experiments (Chapter III) we have char-

acterized three forms of environmental complexity and shown how they create

selective pressures for populations evolving di�erent varieties of structure in their

behaviors, matching those those of their environments. Gradual patchiness of re-

sources causes e�cient foraging behaviors to be evolved. Metabolisms supporting

complementary food chains results in the preservation of biodiversity, but only in

the presence of a su�cient carrying capacity di�erential in favor of mutual behav-

iors. Finally, dynamic environments with seasonal uctuations divide the individ-

uals into subpopulations with di�erent behaviors exploiting seasonal niches. These

collective behaviors are not necessarily optimal, but they are adaptive in that they

guarantee robust survival of the population in the face of increasing environmental

harshness.

In characterizing a \real" (although neither physical nor natural) envi-

ronment such as the World Wide Web (Chapter IV), we have focused on the role of

the topology induced by the hyperlinks manually created by information providers

in their documents. When we started this endeavor, we had di�culty arguing in

defense of our conjecture that such linkage topology could be detected against the

noise background and constitute a precious resource in guiding autonomous soft-

ware agents. Today, much corroborating evidence [88, 28, 27, 72, 100] makes our

conjecture widely accepted and points to linkage topology as a resource as useful

as the statistical topology induced by word usage and exploited by search engines.

Our results suggest that distributed, adaptive, on-line information brows-

ing agents could complement current indexing technology by starting up where

search engines stop. Engines provide global starting points, based on statistical
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features of the search space; agents can use topological features (links) to guide

their subsequent search on-line. We have shown how this approach can extend the

current state of the art by dealing with the problems of scalability, personalization,

and localization.

V.B Directions for future work

V.B.1 From technology to nature

The LEE model has many limitations and possible extensions. To men-

tion just a couple, recombination and development are missing in the current

model. Asexual reproduction by cloning has several limits. Recombination may

facilitate the adaptive process for many rich environments in which the number of

possible behaviors is very large [127, 125]. Sexual reproduction would also enable

us to use LEE for studying the evolution of speciation; sexual selection models have

been proposed in evolutionary biology for this important yet poorly understood

problem [85, 174]. In this thesis we have touched on some themes | biodiversity,

niche selection | that are closely related to speciation.

Another desirable consequence of modeling behaviors is that it demands

a more elaborate characterization of the genotype/phenotype distinction [15, 64].

Such a developmental process would strengthen the role of environment, from

selective pressure on phenotypes to direct interactions with ontogeny.

Minimal models of behaviors dealing with space, such as foraging, habi-

tat selection, signalling, etc., are buildable with LEE without resorting to many

ad-hoc assumptions restricting the range of observables. It is also easy to distin-

guish between, and integrate across, the selective pressures determining within-

and across-niche adaptation. The environments and behaviors studied in this the-

sis have given limited examples of this approach, that could be extended to include

models of selection deriving from more direct interactions among individuals and

populations, such as predation, mate choice, communication, and other social be-
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haviors.

In keeping with the original goal of building tools to help biologists answer

open questions about natural systems, the future emphasis should be on models

that can be predictive of real biological data. A possible �rst step in this direction

might be to study the di�erent species of tropical oceanic �shes (tunas, bill�shes,

sharks) who share and co-exploit the same environment | the pelagic open ocean.

LEE has been used to build a model in which the behavior of predator oceanic �shes

is driven by the biotic environment [32]. The model is studied with simulations in

which arti�cial �shes in an evolving population adapt their behaviors to a three-

dimensional environment. The spatial distribution and temporal dynamics of prey

in the simulated world are inspired by acoustic observations about horizontal and

vertical movements of individuals of di�erent species in French Polynesia. The

movement patterns of many evolved behaviors have been analyzed to compare

arti�cial individuals to real �shes (three species of tunas, three species of bill�sh

and one species of shark) observed by acoustic telemetry, and to examine how

the arti�cial �shes exploit their environment. Most of the arti�cial individuals

have vertical and horizontal patterns similar to those exhibited by �shes in the

wild. This approach exempli�es how models such as LEE can be e�ective tools for

studying multi-behavior ecologies.

Sociality is the last dimension of environmental complexity. Direct inter-

actions among organisms go beyond the characterization of environments grounded

on physical space. Examples of social phenomena that could be addressed within

the LEE framework include interactive signalling, cooperative equilibria, and op-

timal size of social colonies or other complex societies [151].

An important feature of local selection is the robustness it induces in

the evolved populations and behaviors. For this reason, local selection algorithms

could be used for modeling populations of parasitic individuals, such as cancer

cells or AIDS viruses [137]. The resistance of these populations is believed to lie

in their capability to quickly evolve adaptive mutants. The goal of such a model,
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from a therapeutic viewpoint as opposed to the experiments of this thesis and

simulations of adaptive behavior in general, is to �nd ways to most e�ciently kill

o� the population of adapting parasites. In this case it is crucial to characterize

the factors that make the environment | the host | harsh enough to reduce the

diversity of the population and thus weaken its ability to withstand extinction.

V.B.2 From nature to technology

There are many experiments, questions, and ideas around the InfoSpiders

project that could not be explored in this thesis and that remain interesting open

directions for the future. For example, our weighting scheme may be improved; it

has been suggested that the use of IDF in the local relevance estimation mechanism

(Equation IV.3) may be inappropriately biased toward global features [167].

Many parameters of the InfoSpiders algorithm (Table IV.2) have not re-

ceived enough attention. For example, what are appropriate � values to weigh past

versus new relevance assessments? Should this be a �xed parameter, a user-de�ned

preference, or an evolved trait? And how quickly should the energy resources asso-

ciated with relevance feedback decay () in order to optimize performance? How

should agents discount future payo�s in their Q-value function approximation?

Should � be a �xed or evolved parameter? How far should should an agent go to

estimate a link? We have not studied the e�ect of varying the window size �. Fur-

ther, how should we determine the trade-o� between supervised and unsupervised

query expansion? We have illustrated the behavior of the two extremes possibil-

ities for �, but intermediate values remain to be considered. And �nally, what

are appropriate neural net architectures for the agents? Are the linear functions

learnable by perceptrons su�cient to capture the user needs, or do we need the

sophistication of multi-layer networks?

Lukose and Huberman [100] have suggested that the InfoSpiders death

mechanism could be modi�ed according to their optimal stopping criterion inspired

by Equation IV.2 and the way in which real options are evaluated in �nancial
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markets. This could conceivably be accomplished by changing the death threshold

! to take into account the Q-value used for reinforcement learning (cf. Equation

IV.4). However, it would have to be determined empirically whether this approach

would improve performance or hinder the ecological balance determined by energy

conservation and carrying capacity.

Many models of interaction among agents are worth exploration in this

domain. Agents learning from other agents, agent collaboration, and agent com-

munication languages are all examples of very active research areas. The only

form of direct agent interaction that we have touched on is crossover. An agent

at reproduction can recombine its internal representation with that of a \nearby"

agent. The two can internalize experiences that are now relevant to each other

because of their proximity. But the experiments in this thesis have really not ex-

plored the impact of crossover on performance, nor the e�ects of di�erent types of

recombination.

The notion of proximity mentioned above must be regarded in the face

of the communication overhead imposed by recombination. We have argued that

distributed agents are best suited to perform tasks in networked environments.

From this point of view agent interactions must be kept at a minimum. The two

examples of recombination used by InfoSpiders are extreme cases in which inter-

actions occur either at a completely global scale (panmictic crossover) or within

a single document �le (local crossover). Intermediate implementations should be

considered to take advantage of recombination's properties while maintaining the

potential speed-up of distributed execution. One obvious possibility would be to

allow interactions among agents situated on the same server, who could share

information locally without network communication overhead.

These considerations call for further study of both explicit sources of com-

munication, such as recombination, and interference mechanisms that are implicit

in the current model. Such interactions are mainly caused by the use of centralized

repositories for caching, resource sharing, and relevance feedback. The experiments
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on cache size in Chapter IV have only scratched the surface of these issues. The

inclusion of further local state (memory) into an agent representation would not

only allow for localized cache and relevance feedback images, but also reduce the

reactive limitations of the current repertoire of agent behaviors.

While we have just begun to explore the issue of distributed implemen-

tations, mainly by simulation, the agents that we envision are mobile agents that

execute on remote servers. It is not just information that must travel, as in cur-

rent client-server protocols, but agent code as well. This way agents can use their

intelligence to select the information to be sent back to the user's machine; infor-

mation providers will in our opinion be interested in trading o� CPU cycles for

improved network bandwidth. Secure languages and protocols are surely needed

before trusted autonomous agents will become a welcome reality; agent research

is providing systems technology with the thrust that may very soon make such

mobile agents possible [155].

In the experiments outlined in this thesis we have been most interested

in the behavior of agents on a carefully controlled and structured corpus (EB).

Therefore the full diversity we can reasonably expect from our agents as they in-

teract with the real Web remains to be demonstrated. We have shown at least

some divergence in the features that allow one agent to be successful within one

topical area of the Encyclopedia and another, but the real purpose of open-ended

evolutionary methods like those we propose is to adapt to the much wider vari-

ation found in Web media. We expect there to be roles for many di�erent types

of agents, sensitive to widely varying user demands, and e�ective at searching

disparate corpora. Extensive evaluation of our approach on the actual Web is nec-

essary to verify whether these goals can be met, making the problem of evaluation

in open environments one of high priority.

Finally, the feasibility of integrating agent-based on-line search with index-

based search engines must be put to the test. Hybrid systems can be constructed

in which search engines provide agents with good staring points, based on the sta-
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tistical (word-based) topology of the search space. This is crucial because, as we

have shown in Chapter IV, the performance of on-line distributed search degrades

with the distance between starting points and relevant clusters. Personal agents

can then continue the search on-line, adapting to both user and current environ-

mental context. Using a population of autonomous browsing agents as a front-end

to a search engine can help us better understand the mutual bene�ts of the two

approaches and the potential synergies that may ensue.

V.C Interdisciplinary issues

One of the goals of the \arti�cial life bridge" proposed by the research in

this thesis is to strengthen the connections between machine learning, evolution-

ary algorithms, autonomous agents, distributed information retrieval, and ecology.

The cross-fertilization of these areas shows great promise for furthering our under-

standing of complex natural systems as well as applying nature's solutions to the

development of useful technology. Our arti�cial information environments already

exhibit many of the real complexities of the natural world, creating challenges that

warrant new, creative approaches. Living systems will in our opinion continue to

inspire techniques allowing one to meet such growing challenges.

V.C.1 Relevance to natural systems

In one direction we have suggested ways in which computational science

can provide tools to help biologists in their mission to study the natural world.

We hope that LEE can provide for both a rich theoretical framework and a useful

simulation tool not only for the arti�cial life community, but also for studying a

broad range of issues in ecological theory as well as theoretical, behavioral, and

evolutionary biology.

The methods that we have used to characterize di�erent dimensions of

complexity can be applied to understanding the dynamics of adaptive populations
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in other, perhaps more realistic, environments. We have seen that adequate ecolog-

ical models dealing with the spatial structure of environments, as well as models to

relate natural phenomena across scales, are missing [90]. Classic analytical tools,

such as systems of di�erential equations, are limited in their capability to deal with

complex environments. Minimal models such as LEE can contribute to moving in

the right direction.

While biologists have had reason to resist to the use of genetic algorithms

as biologically plausible models of adaptation in natural systems, because of their

optimizing inclination, models based on local selection provide a framework within

which ecological hypotheses can be tested through simulations before �eld experi-

mentation.

A few observations should be made with respect to the experiments on the

evolution of sensory systems and of age of maturity in Chapter III. In each of these

it has traditionally been di�cult to study the interactions between the evolution

of morphological or life history traits on the one side, and of behavioral traits on

the other. For example, prior quantitative approaches to the study of maturation

age are often subject to the limitations of �eld experiments, and therefore these

have mainly focused on morphological bene�ts of delayed maturation, such as body

size, weight, etc. Animal psychology studies of cultural transmission, on the other

hand, have di�culty in casting the phenotypic nature of learned behaviors into the

more general evolutionary framework.

The simulation approach employed here provides a bridge between the

two sides. This is important for biologists because even within the broad area

of the natural sciences, there are disciplines where it is di�cult to transfer data

or models from one type of experiment to another, even if they may be relevant

to each other. The models presented here attest to the potential of arti�cial life

methodologies and interdisciplinary e�orts.
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V.C.2 Relevance to arti�cial systems

Arti�cial life is concerned with applying ideas from the natural biologi-

cal world to engineering problems. In this vein, we have proposed local selection

and internalization as general abstractions applicable to adaptation problems aris-

ing for agents situated in complex | large, noisy, dynamic, distributed, heteroge-

neous, inconsistent | environments. Such characteristics can be found in both the

physical domains studied in robotics and the arti�cial, heterogeneous, distributed

environments studied in information technology.

The local selection algorithm has been applied to another domain |

image compression | in which statistical local features of the environment have

to be captured by an adaptive algorithm. Cecconi et al. [25] have considered

images as 2-D worlds in which a population of agents evolves by selecting areas

rich with information that the user considers worthy of being kept. An extension

of the JPEG compression algorithm uses the population to adapt compression

factors to local environmental characteristics. Agents evolve collective behaviors

that depend on the local texture of the image (e.g., follow edges); their spatial

distribution ends up matching the features of the image. This approach saves

up to 50% of storage robustly, i.e., preserving the most informative image areas.

A very similar approach seems to show great promise in a wide range of image

analysis applications [99].

When an embedded agent (a robot) has to learn appropriate actions by

discovering important correlations between performance and environmental sig-

nals, the topology of the space biases input sequences and thus has tremendous

inuence on the time and space complexity of the learning algorithm [79]. The

di�erent complexity of \ideal" simulated worlds versus noisy, inconsistent, phys-

ical environments is of particular importance for evolutionary robotics [139, 73].

Local selection also enables the self-evaluation of evolving robot behaviors. Under-

standing the role of the environment in shaping the selective pressures giving rise

to collective evolving behaviors is also relevant to the �eld of distributed robotics
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[109].

Careful modeling of environments where multiple agents can interact

by sharing �nite resources, or even more directly by signalling or learning from

each other, is important for the design of e�ective agents who must carry out au-

tonomous tasks on behalf of the user [104, 105]. The world we have considered in

Chapter IV, the Web, has many of the characteristics that make it interesting and

challenging for autonomous software agents. Distributed information retrieval is

only one class of applications where local selection and internalization can suggest

interesting solutions. Any type of distributed search is arguably well suited for

this methodology, whether the resource being sought by the population of agents

is relevant information, a competitive price for some goods, a piece of software, an

investment opportunity, or any other service.

Scalability will in our opinion become an even more central issue in the

next generation of software agents. Assumptions such as completeness, availabil-

ity, consistency, and recency | already false today | will become completely

superseded. Agents will have to rely less on centralized repositories, develop more

initiative, and become more independent. They will have to be able to contin-

uously adapt to new conditions, create new models of their surroundings, and

internalize new features. These goals appear more robustly attainable by large

numbers of simple, dynamic, redundant agents such as InfoSpiders, than by large,

complicated, static programs such as some of the systems currently classi�ed as

agents.

As agents will be endowed with additional capabilities, such as cash to

engage in transactions, memory to keep local state, languages to communicate, and

secure environments to execute remotely, users will trust them to perform more

and more complex tasks on their behalf. Understanding how agents can locally

interact with and adapt to their remote environments, while still satisfying their

requirements at a collective level, will be key to the successful transition to the

next, life-like stage of networked electronic environments.
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