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Abstract

Collaborative query routing is a new paradigm for
Web search that treats both established search en-
gines and other publicly available indices as intelli-
gent peer agents in a search network. The approach
makes it transparent for anyone to build their own
(micro) search engine, by integrating established
Web search services, desktop search, and topical
crawling techniques. The challenge in this model is
that each of these agents must learn about its envi-
ronment — the existence, knowledge, diversity, re-
liability, and trustworthiness of other agents — by
analyzing the queries received from and results ex-
changed with these other agents. We present the 6S
peer network, which uses machine learning tech-
niques to learn about the changing query environ-
ment. We show that simple reinforcement learning
algorithms are sufficient to detect and exploit se-
mantic locality in the network, resulting in efficient
routing and high-quality search results. A proto-
type of 6S is available for public use and is intended
to assist in the evaluation of different AI techniques
employed by the networked agents.

Introduction
Centralized search engines cannot cover the en-
tire Web (Lawrence & Giles 1999) because it is
too large, fast-growing and fast-changing (Brew-
ington & Cybenko 2000; Fetterly et al. 2003;
Ntoulas, Cho, & Olston 2004). As a result, cur-
rent centralized search engine focus on “important”
portions of the Web. However, the notion of impor-
tance is highly subjective: the biases that are intro-
duced to address the needs of the “average” user
can result in diminished effectiveness in satisfying
many atypical search needs. Therefore, the “one
engine fits all” model cannot handle the increas-
ing size, rate of change, and heterogeneity of the
Web and its users. In addition, as search becomes
more prevalent at the desktop level, users will in-
creasingly want to make subsets of the files indexed
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in their computers available to others via the Inter-
net. Peer networks provide us with an architecture
for extending Web search technology to capture the
contextual needs of a diverse population of users,
while leveraging their resources.

There are several models of peer network topolo-
gies and query protocols, including structured, un-
structured, flooding, distributed hash tables, and
hierarchical (Androutsellis-Theotokis & Spinellis
2004). Our design of a collaborative Web search
network is guided by the principle of semantic lo-
cality: peers with shared interests are likely to com-
municate with each other more frequently than un-
related agents, so they should be able to reach each
other in a few virtual hops. However, a dense net-
work would generate too much traffic. A good
topology favors both effectiveness and efficiency,
by making it possible for a query to reach a relevant
target peer in few steps, without imposing a large
traffic load on the entire network. Small-world net-
works (Watts & Strogatz 1998) provide both clus-
tered communities and enough randomness to keep
the network distance small between any two peers.
Effective search requires that the clusters be associ-
ated with a high semantic similarity between neigh-
bors (Watts, Dodds, & Newman 2002). Because
there is no global knowledge of the network (what
peers are currently present, what information they
hold, and what information they seek), and the net-
work is very dynamic (peers may join and leave the
network at any time), we cannot impose semantic
locality into the network by design; instead, we ex-
plore AI techniques through which semantic local-
ity will emerge as the result of local interactions
and learning by individual peer agents.

Our research group is currently developing 6S,
an intelligent multi-agent application for peer-
based Web search (Wu, Akavipat, & Menczer
2005; Akavipat et al. 2006). The name is a contrac-
tion of “six degrees of separation” and “search,” to
reflect the social network of peer agents at the base
of the collaborative search process. Each 6S peer
agent is both a (limited) directory hub and a con-
tent provider; it has its own topical crawler (based



Figure 1: 6S search mechanism and peer discov-
ery. 6S is designed not to have peers aggressively
flooding the network for searching or discovering
new peers. Therefore, the 6S peer only forwards
its query to a small number of selected neighbors.
A time-to-live mechanism ensures that a forwarded
query will not survive in the network too long.
Here Alice’s agent A receives good results from
agent C for Query 1. These results are forwarded
through B. Later, A can send Query 2 directly to
the newly discovered neighbor C.

on local context), which supports a local search
engine—typically but not necessarily a small one.
As shown in Figure 1, queries are first matched
against the local engine, and then routed to neigh-
bors to obtain more results. While receiving re-
sponses, an agent may discover new peers through
its current neighbors. The new neighbor peers can
later contact each other directly.

Figure 2 compares the collaborative search net-
work framework with existing search models. Two
major features we want to merge are contextual
learning (as in intelligent Web agents) and social
collaboration (as in file-sharing peer networks). In-
telligent Web agents leverage local context from
both the user and the information environment
while learning to perform their tasks. Similarly, 6S
agents use the local context captured from the user
and from interactions with other peers, as they learn
to route queries to the most appropriate neighbors.
The local user context of a 6S agent is a document
collection created by the user.

With respect to social collaboration, 6S agents
use a network to share information via queries and
responses, as do nodes in a P2P network. With-
out relying on a centralized resource collection,
our search model emulates the information find-
ing and spreading mechanisms in social networks.
However, powerful central search engines such as
Google and Yahoo can very well contribute to and
profit from the social collaborative framework; in-

Figure 2: Two dimensions of search systems: the
degree of social collaboration—as, for example,
among networked agents—and the degree of user
contextual learning as in intelligent Web agents
such as InfoSpiders (Menczer & Belew 2000), fo-
cused crawlers (Chakrabarti, van den Berg, & Dom
1999), and other topical crawlers.

deed we expect that they would quickly turn into
popular hubs thanks to their large collections and
popularity-driven ranking algorithms. Therefore,
our model of collaborative Web search allows users
to integrate both centralized and social search en-
gines transparently. As in file-sharing networks,
the incentive for people to collaborate is selfish —
they can profit by participating in the network as
they gain access to additional sources tailored to
their needs.

Implementation and Deployment of 6S
6S is designed to make it easy and transparent for
users to index and share a collection of Web pages,
i.e., to build a “micro search engine.” A 6S ser-
vent (server+client) application integrates a topical
crawler, a document indexing system, a retrieval
engine, a P2P network communication system, and
a contextual learning system. In the current im-
plementation, 6S relies on two open-source plat-
forms: Nutch (nutch.org) for its search engine
and JXTA (Waterhouse 2001) for the P2P network
communication framework.

From the user’s perspective, the main features
of 6S are peer search, a personal Web index man-
agement system, and a browser extension. The
peer search functionality is an extension of local
search. Local search is performed using the built-
in search engine to provide users with relevant re-
sults from their local collections. Next, the ap-
plication automatically selects neighbors that are



best suited to answer the user’s query based on the
peer’s prior query-response experience, and sends
the query to those peers. (Using the same mech-
anism, those neighbors forward the query to other
peers, and so on; cf. Figure 1.) Finally, the results
obtained locally and from other peers’ responses
for the same query are combined to remove du-
plicates, re-ranked based on a simple voting algo-
rithm, and then presented to the user. Results are
updated dynamically as they arrive.

Behind the scenes, the application analyzes the
results received from other peers, comparing them
to the local search results, to learn a representation
of the other peers. This representation is then used
to improve the peer selection algorithm, which is
at the heart of the query-routing process. The de-
tail of the machine learning algorithm used for this
purpose are discussed below. The more a user em-
ploys the peer search network, the more she trains
the system to better locate relevant information in
the future.

The personal Web index management system
helps a user automatically create a Web index.
In fully automated (one-click) mode, the appli-
cation selects pages from a local bookmark file
and supplements them with results from a topical
Web crawler. Consider for example a user Alice.
The application analyzes the queries in her Web
search history to construct a topic description, then
launches the crawler. This process takes place the
first time Alice sets up her peer, if she so chooses.
Subsequently, 6S periodically updates the index
with new additions from the Alice’s bookmarks or
with a new topical Web crawl based on her recent
search history and current Web index.

As shown in Figure 3, the index management
feature also allows users to manually create or
add to the personal index, or to launch crawlers
with starting seeds and topics of choice. The cur-
rent implementation employs a best-N-first topi-
cal crawler, which has been proven both efficient
and effective for supporting a dynamic search en-
gine among a number of crawling algorithms (Pant,
Bradshaw, & Menczer 2003; Menczer, Pant, &
Srinivasan 2004). Briefly, the crawler is given a
set of topic keywords that is either entered by the
user or extracted from the user’s Web search his-
tory, and a number of seed pages that are obtained
from the user’s personal bookmarks and/or the lo-
cal document collection. The URLs to be vis-
ited are prioritized by the similarity between the
topic and the page in which a URL is encountered.
Some additional mechanisms guarantee that the
crawler is sufficiently exploratory. This crawler is
publicly available (informatics.indiana.
edu/fil/IS/JavaCrawlers). Once the in-
dex is built, the user can manage (tag, modify,
delete, or recover) any indexed documents. For ex-
ample Alice may index the documents in a review

folder, and provide a topic “data mining” to guide
the crawler. She can modify and/or tag the indexed
documents as well.

An extension for the Firefox Web browser en-
ables convenient access to 6S while the application
is active as a background process. As shown in Fig-
ure 4, users can submit search queries to the local
peer and the 6S network, see the results returned
though the network, and instruct the application to
index new pages — all from the browser. Search
results are shown along with the usual information
like in any traditional search engine (title, snippet,
etc), as well as information about the peers that pro-
vided each result. To export pages to the local peer
and share them with the 6S community, users can
use the Bookmarks drop-down menu and select op-
tions to index all the bookmarks, or just the cur-
rent page. The latter option is also available in a
contextual (right-click) menu. For example, upon
receiving a relevant page from another 6S peer in
response to a query about “social networks,” Alice
may choose to bookmark this page in her local 6S
index, thus making it possible to share this page
with other peers with related queries in the future.

Inside a 6S Agent
Each 6S agent uses a reinforcement learning al-
gorithm to track the profiles of other peers based
on their past interactions. A neighbor profile is
the information that a particular agent maintains to
estimate the neighbor’s likelihood to provide rel-
evant results for various keywords. For example,
if a neighbor has previously provided good results
for Alice’s query “open source software,” her agent
should internalize this information so as to predict
that this might be a good peer to forward a future
query on “free software.” By learning profile in-
formation, agents try to increase the probability of
choosing appropriate neighbors for their queries.

Interactions with peers reveal information of
varying reliability. We want to capture all avail-
able information in profiles, but must discriminate
cues on the basis of their reliability. To achieve this
goal we let each peer maintain two profiles for fo-
cused and expanded information, respectively. The
focused profile concerns only query terms, while
the expanded profile includes keywords that co-
occur frequently with query terms within hit pages.
Each profile has the same structure and is repre-
sented as a matrix W , where each element wp,k is
an estimate of how knowledgeable and reliable is
peer p with respect to keyword k. When p returns
results for a query containing k, wp,k is updated
to reflect the quality of these results. The results
from p are compared to local ones to obtain a re-
inforcement signal: good results induce a reward,
by which wp,k is increased, while poor results in-
duce a penalty and wp,k is decreased. The update
occurs through a running average to slowly forget



Figure 3: Setup of a 6S peer. To create a personal Web index, the user may provide a crawling topic, a
number of seed pages extracted from the user’s bookmarks, and/or a local document collection. These cues
are used to guide a topical crawler. The crawling results are then indexed for keyword searching. For each
indexed document the user can assign or modify tags, which are searchable by the local engine. Users can
also delete/undelete any document entries or remove/update the entire index.

Figure 4: With 6S running as a background process, a user can access 6S without leaving the Web browser
through the 6S extension for Firefox. It allows the user to search through the 6S community, export book-
marks to 6S, or index a single Web page. All these operations can be done with only a few clicks.



Figure 5: Peer profile update. A peer’s response to a query can indicate a peer’s knowledge with respect
to that query. This knowledge is captured by the focused profile,W f . In addition, keywords that co-occur
with query terms within hit pages may reflects (less reliable) information about the peer’s knowledge. This is
captured by the expanded profile, W e.

Figure 6: Peer selection for query routing. For forwarding a query, known peers are ranked by similarity σ
between the query and the peer profiles. The reliability parameter α regulates the contributions of focused
and expanded profiles. Typically 0.5 < α < 1 to reflect higher confidence in focused profile weights as they
come from direct responses to queries.



Figure 7: Semantic locality in emergent 6S communities. (The networks shown are conceptual mock-up.)
Agents initialize and maintain peer profiles by first asking a neighbor for its description, defined as a list
of most frequent keywords in the neighbor’s index; then updating these profiles through query/response
interactions. Such interactions cause the peers to route queries in such a way that peers with similar interests
cluster together to find quality results quickly (high clustering coefficient), while it is still possible to reach
any peer in a small number of steps (small diameter).

past performance while tracking new information.
One of the main motivations behind this approach
is that the learning context is likely to be extremely
non-stationary, with highly dynamic peers interests
and collections. Details are illustrated in Figure 5.
Suppose for example that Alice submits the query
“Lama,” and that Peer 10 returns a set of hits with
an average score of S10 = 0.8. Further suppose
that the results from Alice’s local index yield an
average score of S1 = 0.2. If the previous value
of the weight associated with the term “Lama” in
Alice’s profile of Peer 10 was zero, the new value
would be wf

10,Lama = 0.5γ, where γ is a learning
rate (0 < γ < 1). For multi-word queries, the same
update rule is applied to each term in the query.

In principle, a peer could track an arbitrarily
large number of other agents. Every time that a
new agent is discovered, its profile can be added
to W . In practice, the size of W may be limited
by storage availability. An agent can drop profiles
for the least promising peers when space shortage
requires it. Queries can only be routed to known
agents, i.e., those whose profiles are inW . To route
a new query, known peers are ranked by the similar-
ity between their profiles and the query, as shown
in Figure 6.

Each 6S agent uses the above peer learning and
query-routing algorithms to refine a model of the
other peers. The collaborative network in 6S is
formed by the dynamic communication among the
peers: queries and responses being sent and for-
warded. The instantaneous topology of such a col-
laborative network reflects several dynamic pro-
cesses: the changing Web collections indexed by
the peers, the evolving information needs of the
users, and the knowledge that agents learn about

Figure 8: Activity on the 6S network in 12 weeks
since the prototype release (January–April 2007).
The number of active users (those who submit and
forward queries) has increased slowly from about
20 to almost 40. Note that participants can join
or leave the network arbitrarily. The query traffic
through the network is rather variable, with bursts
following releases of software updates.

others. Initially, when peers know nothing of each
other, queries are routed randomly, and we ob-
serve a random network topology. As 6S agents
refine their internal models of others based on ob-
served queries and responses, query routing be-
comes more content-driven. Semantic locality
means that queries should be routed efficiently to-
ward knowledgeable peers, and peers with similar
interests should end up closer in the collaboration
network. We postulate that such a locality should
lead to the emergence of semantic clusters, as illus-
trated in Figure 7, and thus prevent congestion.



The 6S Collaboration Network
Before the 6S prototype was developed, we exper-
imented with a number of peer representations and
machine learning algorithms for query routing by
running simulations with realistic synthetic users
and queries. The details of these simulations and
our findings have been reported elsewhere (Wu,
Akavipat, & Menczer 2005; Akavipat et al. 2006).
Here we summarize a number of promising prop-
erties about the 6S network, highlighted by these
experiments:

• The agents rapidly form clusters (spontaneous
groups that communicate more within the group
than outside), displaying a query topology that
converges to a small-world network after each
peer has routed as few as five or six queries, and
this change in topology leads to an increase in
the quality of the results.

• The clusters, which are formed by agents’ query
traffic, identify communities of peers with simi-
lar interests, indicating that the network exhibits
semantic locality.

• The collective search performance of the net-
work improves when more sophisticated learn-
ing algorithms are employed by the agents to
route queries, and as more network resources be-
come available. Performance degrades grace-
fully as bandwidth and CPU cycles become
scarcer.

• The 6S peers achieve a search quality (in terms
of precision and recall) that is comparable to that
of Google, and significantly outperform a cen-
tralized search engine with the same resources
(crawl size) as the combined 6S peer collective.

• The 6S algorithms scale well up to 500 peers, the
maximum number of users we were able to sim-
ulate in a closely controlled testing environment.

Since the release of the 6S prototype, we have
been tracking a small community of early adopters
to see if these results hold “in the wild.” This user
study is designed to observe how people use 6S and
how the collaborative search network evolves with
users’ activities. To this end, data is recorded and
transmitted from participants’ computers to a col-
lection server through a secure channel once a day.
The data collected includes query routing informa-
tion, queries, results, size of personal Web index,
and most common indexed terms. Figure 8 plots
the activity of the network in its first 12 weeks of
life. The data and feedback we are collecting are
helping to improve the software by making it more
transparent, persistent, robust, and interactive. For
example, in the prototype used to collect this data,
the application does not run in the background,
so that users quitting the application automatically
leave the network. This behavior will be changed in

future releases, so that a peer can remain active and
useful even when the user is not interacting with it.

Figure 9 visualizes the collaborative search net-
work. We can distinguish the query network, which
shows the propagation of queries among peers,
from the response network, which shows who pro-
vides results to whom. There is evident heterogene-
ity in the number of queries received and results
sent. One of the nodes in the network is a special
peer that submits queries to the Yahoo search en-
gine via its API, and returns the results obtained
from Yahoo. This node is effectively “Yahoo in
disguise” — but the other peers know nothing of
its identity. We wanted to determine whether the
network would learn to rely on this peer, which
is clearly very good, given its universal expertise.
Indeed, the Yahoo peer does become very central,
with the highest number of incoming queries and
also the highest number of incoming edges (peers
that forward queries to it) for most of the exper-
iment duration. It also provides many results to
other peers.

Figure 10 plots the small-world statistics of the
6S collaborative query network within our user
study period. The diameter is defined as the av-
erage shortest path across all pairs of nodes (with
adjustments to deal with disconnected networks).
The network’s clustering coefficient is the average
of nodes’ clustering coefficients, across all nodes.
An individual node i’s clustering coefficient ci is
the fraction of triangles in which i participates, out
of the possible ones. That is, ci is the number of
pairs of neighbors of i that are also neighbors of
each other, divided by the total number of pairs of
neighbors of i. It is interesting to compare these
measures with what one would observe in a random
network, which is known to have a very short diam-
eter and a very small clustering coefficient. There-
fore, for each week, we construct an ensemble of
random networks with the same numbers of nodes
and edges as the 6S networks. Then we measure by
how much the diameter and clustering coefficient
in 6S exceed the average ones from the random net-
works. As Figure 10 shows, the diameter remains
small but the clustering coefficient grows consider-
ably. These conditions indicate the emergence of a
small-world topology in our peer network (Watts &
Strogatz 1998).

Related Work
A P2P computer network relies on the computing
power and bandwidth of the participants in the net-
work, rather than concentrating it in a relatively few
servers. The most popular use of a P2P network
is for file sharing. Applications such as Gnutella,
BitTorrent and KaZaa (Androutsellis-Theotokis &
Spinellis 2004) allow peers to share content files
among peers without having to set up dedicated
servers and acquiring large bandwidth to support



Figure 9: Weekly snapshots of two 6S collaborative search networks. To visualize the query network (left),
we aggregate the queries routed during week 12 of our user study. This was the week with the largest number
of active peers. Edge width is proportional to the number of queries exchanged between two peers. The area
of each node is proportional to the number of queries received by the peer, which is an indirect measure of
centrality, authority, and/or reliability of the peer as learned by the other agents. To visualize the response
network (right), we aggregate results sent during week 6, which was the one with largest number of queries
and responses. This network is visualized from end to end, i.e., an edge directly connects the provider and
the receiver of a result, irrespective of the chain of peers through which the results were actually routed.
Edge width is proportional to number of results exchanged, and node size is proportional to number of results
provided. Thus, larger nodes are more helpful. In both networks, inactive nodes (those with no incoming
queries or outgoing results) are not shown. The node marked with a white rectangle is the Yahoo search
engine in disguise (see text); by design, this peer does not generate or forward queries, yet it is the most
popular target of queries and the second most productive provider of results.

Figure 10: Relative difference between the di-
ameter and clustering coefficient of the collabora-
tive query network and those in random networks.
To measure both diameter and clustering coeffi-
cient, we disregard edge directionality. Trend lines
show that the diameter remains equal to the ran-
dom graph diameter, while the clustering coeffi-
cient increases considerably, compared to the ran-
dom graphs.

the whole community. P2P file-sharing applica-
tions are by no means replacing dedicated servers
in content distribution. They simply provide an
alternative for content distribution by trading the
speed and reliability of dedicated servers for the
ease of sharing, lower cost, fault tolerance, and
lower bandwidth requirement of a file sharer.

Just as P2P file-sharing applications are used to
facilitate content distribution, P2P applications can
be developed to facilitate Web search. There is
a wide variety of peer-based search applications.
For example, a model proposed by the YouSe-
arch project is based on maintaining a centralized
search registry for query routing (such as Napster),
while providing the peers with the capability to
crawl and index local portions of the Web (Bawa
et al. 2003). NeuroGrid employs a learning mech-
anism to adjust metadata describing the contents
of nodes (Joseph 2002). A similar idea has been
proposed to distribute and personalize Web search
using a query-based model and collaborative filter-
ing (Pujol, Sangüesa, & Bermúdez 2003).

An intermediate approach between the com-
pletely decentralized flood network (as in Gnutella)
and the centralized registry is to store index lists in
distributed, shared hash tables (Suel et al. 2003).
In pSearch (Tang, Xu, & Dwarkadas 2003), latent
semantic analysis (Deerwester et al. 1990) is per-
formed over such distributed hash tables to provide



peers with keyword search capability. Another al-
ternative is that of hybrid peer networks, in which
multiple special directory nodes (hubs) construct
and use content models of neighboring nodes to de-
termine how to route query messages through the
network (Lu & Callan 2003).

Similar ideas are receiving increasing attention
in the multi-agent literature. For example, a model
proposed by Bulka et al. (2006) includes a learning
algorithm by which each agent uses local informa-
tion and previous experience to refine a classifier.
The agent then uses the classifier to decide which
agent groups to join or whether to form a new group
to complete a task. Pearce & Tambe (2007) study
optimal collaborative strategies based on local in-
teractions for teams of agents to solve distributed
constraint optimization problems.

Status and Future Work
6S is freely available at Sixearch.org. We
hope to attract a community of users, which will
allow us to test its scalability and robustness, while
improving its usability and effectiveness. Be-
cause collaborative peer search represents a new
paradigm for Web search, the interface between
the 6S network and its users is critical. It is im-
portant that we understand how users interact with
6S and how to best keep their experience positive.
The user study, still under way, should provide us
with information that will help improve 6S. If users
continue to find 6S useful, they will maintain their
presence in the peer network.

We plan to explore additional learning algo-
rithms to improve the performance of 6S’s adap-
tive query routing. For example, we want to mine
the streams of queries and responses that are for-
warded though a peer. In the Gnutella v0.6 file-
sharing network, peers tend to issue queries that are
very similar to the content of files they have avail-
able for sharing (Asvanund et al. 2003). This sug-
gests that a profile of a peer’s knowledge should be
updated based on the queries the peer issues in ad-
dition to the query responses that it produces. An-
other technique we would like to examine, query
relaxation, was proposed in a semantic Web set-
ting (Tempich, Staab, & Wranik 2004). A peer
that queries for RDF data assumes that a neigh-
bor may have knowledge about a topic/query if it
has knowledge about a more specific version of
the topic/query. While our application is arguably
more difficult due to the unstructured nature of
generic Web pages, we hope that the promising
scalability results obtained for semantic Web data
will generalize to Web IR.

A number of other IR techniques are also under
consideration. For example, profiles in the current
prototype are based on simple vector space repre-
sentations. Similarity between queries and docu-
ments is based on simple vector cosine measures.

While these techniques are well established, they
have limitations when one considers keyword spar-
sity, ambiguity, synonymity, and so on. Richer rep-
resentation, for example based on co-occurrence
statistics (e.g., LSI (Deerwester et al. 1990)) or
semantic ontologies (e.g., WordNet) could address
some of these issues.

A peer selection algorithm should be able not
only to determine which peers are best suited for a
given query, but also to predict which combinations
of peers provide the least redundant results. Ex-
isting peer selection algorithms take into account
only the predicted query-specific precision quality
of known peers for peer ranking. In a purely un-
structured network such as 6S, however, each peer
crawls the Web independently based on its own in-
terests, without any central control mechanism. As
a result, it is likely that peers with similar interests
will have a high degree of overlap between their
document collections. Consider the extreme case
of two peers with identical collections. In a naive
peer selection approach, if one peer is selected as
a good neighbor, the other peer will definitely be
selected as well. However, forwarding a query to
both peers will generate no more relevant results
than submitting to one peer alone, due to their col-
lection overlap. We are investigating extensions to
the peer selection algorithm in which a peer would
pay attention to the overlap between two neighbors
in order to maximize recall as well as precision.

Finally, in developing a collaborative peer based
search network, one has to think about protecting
the system from abuse. For example, by exploiting
knowledge of how peers learn from query interac-
tions, attackers can craft their responses to make
targeted peers favor the attackers for future query-
ing while directing users to spam content. Collud-
ers can also set up peers that provide some high-
quality responses, but mixed with pointers to spam-
ming peers. In addition, the victims may inadver-
tently help the attackers by forwarding other peers’
queries to them, thus exposing those peers to the
same response attacks. To prevent such exploita-
tion, a collaborative search network such as 6S
needs a security component. We are working on
a reputation system that can help distinguish spam-
mers from honest peers.
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