
(C) 2001 Filippo Menczer, The University of Iowa

OAMulator

Online

One Address Machine emulator

and

OAMPL compiler
http://myspiders.biz.uiowa.edu/~fil/OAM/

(C) 2001 Filippo Menczer, The University of Iowa

OAMulator educational goals

• OAM emulator concepts
– Von Neumann

architecture

– Registers, ALU,
controller

– CPU stages of execution

– Instruction Set
Architecture

– Assembly languages

– Memory and addressing

• OAMPL compiler
concepts
– High level languages

– Compilers

– I/O, assignment, and
control statements

– Variable reference
resolution

– Expressions and parsing

– Optimization

(C) 2001 Filippo Menczer, The University of Iowa

The One
Address
Machine
(OAM)

registers

memory

ALU

PC

IR

ACC
B

AR

I/O0
1
2
3
4
5
6
7
8
9

10Assumptions:
• Infinite memory
• Integers only
• Program instructions start at address 1 (PC=1)
• I/O occurs at address 0

(C) 2001 Filippo Menczer, The University of Iowa

Fetch-
execute-

increment
cycle

• Read instruction from memory at
address PC into IR

• Execute instruction in IR
• Increment PC by 1
• Repeat until the program orders to halt

memory

ALU

PC

IR

ACC
B

AR

I/O0
1
2
3
4
5
6
7
8
9

10

(C) 2001 Filippo Menczer, The University of Iowa

Fetch-
execute-

increment
cycle

• Read instruction from memory at
address PC into IR

• Execute instruction in IR
• Increment PC by 1
• Repeat until the program orders to halt

memory

ALU

PC

IR

ACC
B

AR

I/O0
1
2
3
4
5
6
7
8
9

10

(C) 2001 Filippo Menczer, The University of Iowa

Fetch-
execute-

increment
cycle

• Read instruction from memory at
address PC into IR

• Execute instruction in IR
• Increment PC by 1
• Repeat until the program orders to halt

memory

ALU

PC

IR

ACC
B

AR

I/O0
1
2
3
4
5
6
7
8
9

10

(C) 2001 Filippo Menczer, The University of Iowa

Fetch-
execute-

increment
cycle

• Read instruction from memory at
address PC into IR

• Execute instruction in IR
• Increment PC by 1
• Repeat until the program orders to halt

memory

ALU

PC

IR

ACC
B

AR

I/O0
1
2
3
4
5
6
7
8
9

10

(C) 2001 Filippo Menczer, The University of Iowa

OAM assembly language
• OAM Instruction Set: the set of instructions

understood by the assembler/controller
• ALU instructions: one address

– OP address means take the value at address, put it in
register B, then do OP on contents of ACC and B,
and finally store result in ACC

ADD address ;; load B, add ACC and B, store result in ACC
SUB address ;; load B, subtract B from ACC, store result in ACC
MLT address ;; load B, multiply ACC and B, store result in ACC
DIV address ;; load B, divide ACC by B, store result in ACC

SET value ;; set ACC to value
NEG ;; negate ACC
INC ;; increment ACC value by 1
DEC ;; decrement ACC value by 1

(C) 2001 Filippo Menczer, The University of Iowa

OAM assembly language

• Memory and I/O instructions: one address

– OP address means do OP between values at address
and ACC

– Write <=> Output and Read <=> Input if address=0
(memory-mapped I/O)

LDA address ;; load ACC with value stored in memory at address
STA address ;; store contents of ACC in memory at address

(C) 2001 Filippo Menczer, The University of Iowa

OAM assembly language
• Control instructions: alter the flow of control

from the sequential model

– Conditional and unconditional branch
• The unconditional branch is a one-address instruction that

instructs the computer to "take the next instruction from
memory location address instead of current address +1”

• The conditional branch does the same but only if the
given condition on ACC is satisfied

BR address ;; set PC=address (next instruction from address+1)
BRP address ;; set PC=address if ACC is positive, else ignore
BRZ address ;; set PC=address if ACC is zero, else ignore
HLT ;; stop OAM

(C) 2001 Filippo Menczer, The University of Iowa

Simple OAM assembly
language programs

• What do they do?

1. LDA 0
2. STA 100
3. LDA 0
4. ADD 100
5. STA 100
6. MLT 100
7. STA 0
8. HLT

1. SET 10
2. STA 0
3. DEC
4. BRP 1
5. HLT

(C) 2001 Filippo Menczer, The University of Iowa

Simple OAM assembly
language programs

• What do they do?

1. LDA 0
2. STA 100
3. LDA 0
4. ADD 100
5. STA 100
6. MLT 100
7. STA 0
8. HLT

1. SET 10
2. STA 0
3. DEC
4. BRP 1
5. HLT

Initial internal state:
PC=1; AR=?; IR=?;

ACC=?; B=?

(C) 2001 Filippo Menczer, The University of Iowa

Simple OAM assembly
language programs

• What do they do?

1. LDA 0
2. STA 100
3. LDA 0
4. ADD 100
5. STA 100
6. MLT 100
7. STA 0
8. HLT

1. SET 10
2. STA 0
3. DEC
4. BRP 1
5. HLT

Initial internal state:
PC=1; AR=?; IR=?;

ACC=?; B=?

After fetch:
PC=1; AR=1; IR=SET 10;

ACC=?; B=?

(C) 2001 Filippo Menczer, The University of Iowa

Simple OAM assembly
language programs

• What do they do?

1. LDA 0
2. STA 100
3. LDA 0
4. ADD 100
5. STA 100
6. MLT 100
7. STA 0
8. HLT

1. SET 10
2. STA 0
3. DEC
4. BRP 1
5. HLT

Initial internal state:
PC=1; AR=?; IR=?;

ACC=?; B=?

After fetch:
PC=1; AR=1; IR=SET 10;

ACC=?; B=?

After execute:
PC=1; AR=1; IR=SET 10;

ACC=10; B=?

(C) 2001 Filippo Menczer, The University of Iowa

Simple OAM assembly
language programs

• What do they do?

1. LDA 0
2. STA 100
3. LDA 0
4. ADD 100
5. STA 100
6. MLT 100
7. STA 0
8. HLT

1. SET 10
2. STA 0
3. DEC
4. BRP 1
5. HLT

Initial internal state:
PC=1; AR=?; IR=?;

ACC=?; B=?

After fetch:
PC=1; AR=1; IR=SET 10;

ACC=?; B=?

After execute:
PC=1; AR=1; IR=SET 10;

ACC=10; B=?

After increment:
PC=2; AR=1; IR=SET 10;

ACC=10; B=?

(C) 2001 Filippo Menczer, The University of Iowa

Programming and compilation
• Let’s see how your applications written in some

high-level language are compiled
– OAMPL (Simple PL for One Address Machine)
– OAMPL compiler: from OAMPL to OAM machine

code

• OAMPL instructions are more complex than
(correspond
to many)
OAM
instructions

• Example:

1. WRITE "Input a B value."
2. READ B
3. WRITE "Input an A value."
4. READ A
5. ASSIGN A (- A (* B A))
6. ASSIGN C (* A A)
7. WRITE "The value of (A - AB) squared is"
8. WRITE C

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL compiler
• The job of the compiler is to translate OAMPL

instructions into a corresponding set of OAM
instructions without compromising the integrity
of the algorithm the program implements

• Many different, equally valid, such translations
exist. All things being equal, we'd prefer a
shorter translation, since fewer OAM
instructions that accomplish the same thing
imply the program will execute faster

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL instructions
• I/O, assignment, and control statements
• OAMulator’s OAMPL compiler is case-

independent for keywords and case-
dependent for variables

• I/O statements: READ & WRITE
– WRITE const | variable | exp
– READ variable

WRITE 5
WRITE "Foo!"
WRITE A
WRITE (+ A (* 5 B))

READ A

(C) 2001 Filippo Menczer, The University of Iowa

Resolving variable references
• OAM only groks memory locations
• We need a map from variable names to memory

locations
– Compilers generally do a first pass to figure out all

variables so that variable locations will not clash
with the loaded program instructions

– We use a less sophisticated approach: skip a location
whenever a variable is first encountered (intersperse
variables with code)

1. LDA 0 ;; Read A into ACC
2. STA 4 ;; Place A into location 4
3. BR 4 ;; Skip memory location where A is stored
4. NOOP ;; Place holder; this instruction will NEVER be executed
…
12. LDA 0 ;; Read A again (not new: reuse location for consistency!)
13. STA 4 ;; Place A into location 4

(C) 2001 Filippo Menczer, The University of Iowa

Parsing OAMPL expressions
• OAMPL expressions consist of nested

expressions using the operators +, –, *, /
• (operator operand1 operand2)

Prefix notation make parsing easier

+, *, / take 2 expressions as arguments

– may take one or two expressions as arguments

• At the lowest level, an expression may be a
constant or a variable name

• Example: if C=4, what should the following
print to the screen? WRITE (* 3 (- C))

(C) 2001 Filippo Menczer, The University of Iowa

Parsing OAMPL expressions

• OAMulator’s OAMPL compiler only
allows at most one level of nesting in
expressions

• Examples:
– GOOD: (+ a (/ b 2))

– GOOD: (* (- x1 x2) (- x1 x2))

– BAD: (- 1 (* 3 (- c)))

(C) 2001 Filippo Menczer, The University of Iowa

Parsing OAMPL expressions
– Compiler strategy:

• Evaluate first operand
• Store this intermediate result in a temporary location
• Evaluate second operand
• Multiply by

intermediate
result

• Write to screen

– So if we start at
11 and assume C is in 7:

WRITE (* 3 (- C))

;; instructions to place value of first operand for MLT instruction in ACC...
n STA n+2 ;; Place intermediate result in location n+2
n+1 BR n+2 ;; Skip intermediate result
n+2 NOOP ;; Place holder for intermediate result
;; instructions to place value of second operand for MLT instruction in ACC...
m MLT n+2 ;; Multiply by intermediate result from n+2
m+1 STA 0 ;; Write result to output

(C) 2001 Filippo Menczer, The University of Iowa

Parsing OAMPL expressions
– Compiler strategy:

• Evaluate first operand
• Store this intermediate result in a temporary location
• Evaluate second operand
• Multiply by

intermediate
result

• Write to screen

– So if we start at
11 and assume C is in 7:

WRITE (* 3 (- C))

;; instructions to place value of first operand for MLT instruction in ACC...
n STA n+2 ;; Place intermediate result in location n+2
n+1 BR n+2 ;; Skip intermediate result
n+2 NOOP ;; Place holder for intermediate result
;; instructions to place value of second operand for MLT instruction in ACC...
m MLT n+2 ;; Multiply by intermediate result from n+2
m+1 STA 0 ;; Write result to output

11. SET 3 ;; Load a 3 into ACC
12. STA 14 ;; Store intermediate result
13. BR 14 ;; Skip intermediate result
14. NOOP ;; Place holder
15. LDA 7 ;; Load value of C into ACC
16. NEG ;; Negate
17. MLT 14 ;; Multiply by intermediate result
18. STA 0 ;; Write ACC to screen

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL assignment statement

• ASSIGN is the most common OAMPL
statement
– ASSIGN variable const|var|exp

– As with READ, ASSIGN should handle both the
situation where the first argument is a brand new
variable, and the situation where the first
argument is a preexisting variable

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL control statements
• The OAMPL statements IF and ENDIF

support conditional execution
– IF const|var|exp … ENDIF

• Notes:
– Can be nested!

– Why can we do without ELSE?

IF 3 ;; true if != 0
WRITE ”Bar!” ;; body
ENDIF ;; continue

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL control statements
• The OAMPL statements IF and ENDIF

support conditional execution
– IF const|var|exp … ENDIF

• Notes:
– Can be nested!

– Why can we do without ELSE?

IF 3 ;; true if != 0
WRITE ”Bar!” ;; body
ENDIF ;; continue

20. SET 3
21. BRZ 23
22. SET ”Bar!"
23. STA 0

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL control statements

• The OAMPL control statements LOOP and
END support the notion of iteration
– LOOP const|var|exp … END

• Notes for proper
implementation:
– Maybe zero times!

– Can have nested loops!

LOOP 10 ;; repeat 10 times
WRITE "Foo!" ;; body
END ;; go back unless done

(C) 2001 Filippo Menczer, The University of Iowa

OAMPL control statements

• The OAMPL control statements LOOP and
END support the notion of iteration
– LOOP const|var|exp … END

• Notes for proper
implementation:
– Maybe zero times!

– Can have nested loops!

LOOP 10 ;; repeat 10 times
WRITE "Foo!" ;; body
END ;; go back unless done

18. SET 10
19. BR 25
20. NOOP
21. STA 20
22. SET "Foo!"
23. STA 0
24. SET -1
25. ADD 20
26. BRP 20

(C) 2001 Filippo Menczer, The University of Iowa

Optimizing compilers
• The complexity of the compiler increases:

– With the complexity of the language

– With the desired efficiency of the output code

1. READ A
2. WRITE A

1. LDA 0 ;; Read A into ACC
2. STA 4 ;; Place A into location 4.
3. BR 4 ;; Skip memory location where A is stored.
4. NOOP ;; Place holder; this instruction will NEVER be executed.
5. LDA 4 ;; Read value of A into ACC
6. STA 0 ;; Write it to the screen
7. HLT

1. LDA 0 ;; Read A into ACC
2. STA 0 ;; Write A to screen
3. HLT

Optimizing
compiler

Non-optimizing
compiler

(C) 2001 Filippo Menczer, The University of Iowa

Optimizing compilers
• How could we optimize this sample code?

• Note that A is not used elsewhere

• Note that the integrity of A is not compromised by other
operations

• Optimizers make multiple passes through the
code to check for many such conditions and
transform the code to more and more efficient
forms, without altering the semantics!
– Some optimizations are machine dependent

– Optimization is hard and time consuming

• OAMulator’s compiler does not optimize

(C) 2001 Filippo Menczer, The University of Iowa

OAMulator tutorial: OAM
1. Type your assembly code here

2. Write input for your program here, if any

3. Click “Execute”

4. The output of your program,
if any, will appear here;

if there are errors they will also
appear in this pane

(C) 2001 Filippo Menczer, The University of Iowa

OAMulator tutorial: OAMPL
1. Type your program here

2. Click “Compile”

3. Your program, compiled into assembly, will appear here

4. If there are error messages
they will appear here

5. If compilation was successful,
you can now run your compiled
program by clicking “Execute”
(don’t forget input if necessary)

(C) 2001 Filippo Menczer, The University of Iowa

History and credits
• OAM and OAMPL were developed in the early 1990’s by

Prof. Alberto Maria Segre at Cornell University
– Part of a suite of simple instruction sets and computer architectures

designed to support instruction in an introductory computer science
course for non-majors

– First came the SM (Stack Machine) and SMPL
– Then came OAM and OAMPL
– Last came the TAM (Two Address Machine) and TAMPL
– Emulators & compilers for these machines & PLs were written in Scheme

• OAM and OAMPL have been used by Proff. Segre and Menczer
to support teaching of computer hardware and software concepts
in the Introduction to Information Systems course, part of the
MIS Master program at the University of Iowa

• OAMulator was developed in Perl by Prof. Menczer
– It is hosted on the myspiders server, funded in part by an Instructional

Improvement Award from the University of Iowa Council on Teaching

