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Web Results 1 - 100 of about 282,000 for global warming

The Global Warming hoax by James K. Glassman -- Capitalism Magazine
The delegation met Wednesday with counterparts from Europe, and Inhofe and many of his
colleagues were shocked at the Europeans' refusal even to consider ...
capmag.com/article.asp?I0=3400 - 19k - -

Capitalism Magazine: The Global Warming hoax by James K. Glassman

The delegation met Wednesday with counterparts from Europe, and Inhofe and many of his

colleagues were shocked at the Europeans' refusal even to consider ...
capmag.com/articlePrint.asp?ID=3400 - 13k - -
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No Scientific Consensus On Global Warming

The United Nations Intergovernmental Panel on Climate Change (IPCC) changed or deleted
more than 15 sections in Chapter 8 of the report —-sections setting ...
www.zianet.com/wblase/endtimes/gwarm.htm - 15k - -

ESR | June 9, 2003 | Revisiting the global warming hoax

The entire global warming hoax is based on computer models and they are designed to
produce ... The global warming hoax is not about the Earth's climate. ...
www.enterstageright.com/ archive/articles/0603/0603warming.htm - 11k -

Archive | November 13, 2000 | Desperate times call for desperate acts
The Greens global warming hoax, the cause that followed the Ice Age fiasco, ... Vice
President Gore's star witness for the global warming hoax, ...
www_enterstagenght.com/archivel articles/1100environmentalism. htm - 11k -
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"Man-Made Global Warming hoax" by Tom Gremillion

Global warming is a hoax, invented in 1988, that combines old myths including limits to
growth, sustainability, the population growth time bomb, ...
www.chronwatch.com/content/contentDisplay.asp?aid=12594 - 36k - -

Global Warming |s Greatest hoax Ever -- America's Future -- Week ...
DeWeese calls global warming "the greatest hoax ever perpetrated on the pecple of the
world, bar none. Those who have been fighting against the green agenda ...
www.americasfuture. net/ 1997/ nova7/97-1123a.html - 9k - -
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Total number of results 448,000

Number of listings per page, total 20 GO ( ngewa Ch
Sponsored listings per page 10

MNon-sponsored listings per page

Percent of first page, non-sponsored results that are commercial

Percent of the top 100 results that are noncommercial

Number of valuable news articles in the first 100 results

Number of commercial sites with multiple listings in top 100
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Search engines are a big part of our everyday life. Most of us rely on search engines to discover and access
contents from the Web. Does this mean that now we can be biased by what search engines process and
present to us? What kind of and how much bias can search engines potentially introduce? The primary goal of

this research project is to investigate the potential bias of search engines problem and come up with technical
solutions to this problem.

Publications

1. Junghoo Cho, Sourashi€Roy "Impact of Web Search Engines on Page Popularity.” In ?
World-Wide Web Confere WWw), May 2004.

. Feng Qiu, Zhenyu Liu, Junghoo Cho "Analysis of User Web Traffic with a Focus on Search Activities." In
Proceedings of the International Workshop on the Web and Databases (WebDB), June 2005.

. Junghoo Cho, Sourashis Roy, Robert E. Adams "Page Quality: In Search of an Unbiased Web Ranking.” In
Proceedings of 2005 ACM International Conference on Management of Data (SIGMOD), May 2005.

. Sandeep Pandey, Sourashis Roy, Christopher QOlston, Junghoo Cho, Soumen Chakrabarti 2Shuffling a
Stacked Deck: The Case for Partially Randomized Ranking of Search Engine Results" In Proceedings of
31st International Conference on Very Large Databases (VLDB), September 2005.




Questions

e Are we witnessing a monopolization of
the Web by an oligarchy of sites?

e Can we quantify popularity bias from
empirical evidence?

e Can we predict popularity bias with a
simple model of searching®
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Popularity Bias
(“Entrenchment”, “Googlearchy”)




Modeling search engine bias
from the relationship
between indegree and traffic

1. traffic ~ P(click)
. P(click) -~ f(rank)

. rank ~ f(PageRank)

B O 20

. PageRank -~ f(indegree)
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1078 visits

1076 visits

1074 visits

Page traffic

107L visits

1070 visits

Googlearchy: search
engines amplify rich-get-
richer bias of the Web
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surfing without search engines: popularity
reﬂects mch-get -richer bias of the Web




Googlearchy: search engines amplify
rich-get-richer bias of the Web




Empirical measurements

Indegree
e Google service
e Yahoo service
e Repeated a few
months apart
o Traffic
e Alexa service
e Page viewsin &
months
e Domains vs. sites
VS. pages
28,164 sites
e about 2,000
popular
e the rest random
sample

10*
k (in-degree)




k (in-degree)

Data vs. Models







Revised model
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Revised model
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Effect of hit set size
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Idea: with few hits, established popular sites
are less likely to be included and get a boost



Convoluting the curves

to(R, N) = / "M g (1. NVE(R, N, h)dh

hm

to(R, N) = /1};% S(h, N)h A(N)F(Rh)dh
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Integrating the curves by
simulating the process

S(h,N) = B(N)h 9

ts(R, N) =

A(N)B(N) hMN21_5F (R ) i
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Data vs. “Semantically
Correct” Model
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Googlearchy: search
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Empirical data: search mitigates
rich- get mcher blas of the Web




Conclusions

e The use of search engines partially
mitigates the rich-get-richer nature of
the Web, giving new sites an increased
chance of being discovered (compared
to surfing alone), as long as they are
about specific topics that match the
interests of users.

e The combination of (i) how search
engines index and rank results,
(ii) what queries users submit, and
(ii1) how users view the results, leads to
an egalitarian effect (*Googlocracy”).



Search engines cleared of bias favouring big sites

Economist.com S Robert Jagues, vnunet.com 09 Aug 2006
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How do search engines affect Web growth!?




Web growth by searching

e Let’s model the evolution of the Web by
assuming that pages are discovered mainly
by searching

e Contrast current models:

e Assume people link new pages to most popular
ones (preferential attachment)

e Must know degree
e Only undirected networks

e Only works if P(link) exactly proportional to
degree

e Disregard user interest topics, page content, etc.



General network growth model

il
p(t+1— j) ~ Ry % = p(k) ~ k L)

e Sort page by “prestige,” e.g.,
age, degree, PageRank,
relevance, etc.

10> 10°

e No need to know values of 1  (dogres)
original “prestige” measure

a degree
O fitness (unif.)
O fitness (exp.)

e R:rank (1,R%,...) - y=1+l/a

PRL 2006



Limited information

e What if new nodes do not know global
ranks, but only local ranks within a
selected subset of all existing nodes?

o Preferential attachment ‘breaks’...

e T'wo cases:

1. Each node is selected with fixed

probability, h (independent of N):
degree distribution still scale-free!

&. Different nodes may have different
knowledge: a bit more complicated...



&. Each node is selected with probability
h distributed as:

p(h) ~ h=P = p(k) ~ k=7 (%P)

General model:

e Uuniform distribution
for =0

e exponential for p—o
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Web as special case!



Rank based growth model

e Works with many prestige measures

e No need to know degree or other
prestige values, only ranks

e Works with broad class of power
functions for P(link)

e Works with directed networks
e Works with limited information

e Strong stability against variation in the
parameters

e Web search as special case: close
prediction of Web graph’s topological
features
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