
Diverse Peer Selection in Collaborative Web Search

Le-Shin Wu
School of Informatics

Indiana University
Bloomington, IN 47405, USA

lewu@indiana.edu

Filippo Menczer
School of Informatics

Indiana University
Bloomington, IN 47405, USA

fil@indiana.edu

ABSTRACT
Effective peer selection for intelligent query routing is a chal-
lenge in collaborative peer-based Web search systems, especially
unstructured networks that do not have any centralized control
of peer document collections. In particular, routing a query to
multiple peers that provide the same results is a waste of resources.
To deal with overlapping document collections we propose a
diverse peer selection approach for adaptive query routing. This
approach takes into account not only which neighbors are the best
resource providers for a given query, but also which combinations
of neighbors can provide the least redundant results. We validate
the feasibility of our proposed algorithm by presenting several
simulation experiments conducted with different configurations
of peer network environments. Two novel evaluation measures,
distributed precision and distributed recall, are also introduced
to provide an effective comparison of different peer network
systems. These two performance measures extend the well known
IR measures of precision and recall by integrating network costs,
namely bandwidth and latency. Our algorithm finds results of
equivalent quality using less time and generating less traffic in the
presence of varying amounts of document duplication.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Distributed systems, information networks,
performance evaluation (efficiency and effectiveness)

Keywords
Peer collaborative search, peer selection, overlap, coverage, dis-
tributed precision and recall.

1. INTRODUCTION AND BACKGROUND
A growing Web information retrieval literature (e.g., [2, 8, 11,

13]) suggests that the scalability limitations of centralized search
engines can be overcome via distributed systems. Peer networks
are increasingly seen as a candidate framework for distributed Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

search applications.
Peer networks use the social network as the basis for informa-

tion retrieval and can be classified into different models based on
the type of network management. For instance, centralized models
maintain a centralized search registry for query routing [2]. Un-
fortunately, the central control in this approach makes it difficult
to adapt the search process to the heterogeneous and dynamic con-
texts of the peer users. Another type is a decentralized model (as in
early versions of Gnutella), in which queries are sent and forwarded
blindly by each peer. The problems of this approach are that peers
flooded by requests cannot manage the ensuing traffic, and that the
topology is uncorrelated with the interests of the peer users. Com-
bined approaches between the above two are also available such as
distributed routing tables [13, 14] and hierarchical routing between
hub and leaf peers [11]. An alternative is the adaptive model [1,
16], which uses the idea of learning content profiles of neighboring
nodes without assuming the presence of special directory hubs.

Peer selection is one of the central components allowing unstruc-
tured peer networks to achieve good search performance. When
peers issue a query, in addition to matching their own local search
engines, the query is forwarded to other peers specializing in that
given query by using criteria that measure the degree of similarity
between the query and the other peers’ knowledge. For example,
Crespo and Garcia-Molina [5] use a taxonomy to classify peers and
queries into one or more leaf concepts according to their content.
Then peers with semantically similar content are grouped together.
A query is sent to groups that have higher probability to answer it
and propagates only inside those groups. Haase et al. [6] use peers’
expertise as the basis for peer selection. Peers define their expertise
based on a predefined common ontology. Peers whose expertise is
similar to the subject of a query are selected as candidates for query
routing. Tempich et al. [15] use RDF statements as the representa-
tion of remote peers’ knowledge. To search for a query, a certain
number of peers who have knowledge that matches the query, and
who have provided quality results for similar queries before, are
selected as targets for the query.

However, these existing peer selection algorithms take into ac-
count only the predicated query-specific relevance quality of all
known peers for peer ranking. Although they can attain good re-
sults by greedily maximizing the match between peers and queries
(i.e. the precision of each selected peer), they may suffer from sub-
optimal coverage and a resulting loss in both recall and efficiency.
In an extreme case, for example, there may be two peers with iden-
tical document collections (which fully overlap). For a traditional
peer selection approach, if one peer is selected as a good neighbor,
the other peer will definitely be selected as a good neighbor, too.
However, forwarding a query to both peers will not return more
quality results than submitting to one peer alone.

Bender et al. [3] use a Bloom filter [4] as a tool to account for
collection overlap in the course of peer selection. However, this
approach necessitates the creation of one Bloom filter for each
(peer, term) pair and then the propagation of these Bloom filters
across the network. Thus it is not scalable for a large network be-
cause of the communication congestion and information storage
problems. Another solution computes the collection overlap based
on the intersection between the bag union of the results from differ-
ent collections [7]. But this method needs to establish representa-
tives of each text collection by sending out probing queries and this
could be a rather expensive task. In the face of these limitations,
we propose a peer selection algorithm that only uses local infor-
mation, such as queries and responses, as a basis to consider the
collection overlap among peers for query routing; therefore peers
do not need to make any extra effort to advertise their index infor-
mation on a global level. The key idea of our proposed algorithm
is that the search performance problem due to the overlap of peers’
collections can be alleviated by selecting a combination of neigh-
bors which can provide the least redundant results.

2. DIVERSE PEER SELECTION

2.1 Collection Overlap
Conceptually, the collection overlap between two peers corre-

sponding to a particular query can be defined as the ratio of rele-
vant documents present in one peer’s collection that also present in
the other peer’s collection. More specifically, assume p1 and p2 are
two peers in a peer network. Let H(p1, Q) be a retrieved relevant
set corresponding to a query Q and returned by p1, and H(p2, Q)
be a retrieved relevant set corresponding to the same query Q and
returned by p2. The collection overlap of p1 with respect to p2

corresponding to Q can be calculated as the ratio of the number
of identical elements (based on the URL comparison) in H(p1, Q)
and H(p2, Q) to the number of elements in H(p1, Q):

O(p1, p2)Q =
|H(p1, Q)

T
H(p2, Q)|

|H(p1, Q)| . (1)

Note that the collection overlap between two peers defined in
Equation 1 is a non-symmetric measurement, i.e., the value of
O(p1, p2)Q is not necessarily equal to the value of O(p2, p1)Q,
unless the two retrieved sets contain the same number of results.
With the overlap measure of Equation 1, we can infer that if the
value of O(p1, p2)Q is high and p2 is already selected as one
information provider, then selecting p1 as another information
provider would provide little additional information. By contrast,
if the value of O(p1, p2)Q is low and p2 is already selected as
one information provider, then selecting p1 as another information
provider will likely provide us with useful new information.

In addition, the collection overlap measure of Equation 1 does
not tell us about the exact overlap between the document collec-
tions kept by two different peers. Instead, it provides relative infor-
mation about the approximate degree of redundancy between two
retrieved sets focused on a particular query. However, in a collab-
orative peer network environment, precise information about the
collection overlap between two peers is not necessary because the
search scope is limited by the information needs and interests of the
peers, and the retrieval algorithms of the local search engines may
be different for different peers. Therefore, Equation 1 is sufficient
to give us a flavor as to how much more novelty a peer can possibly
provide for a particular query if another peer is already selected.

To support adaptive query routing, each peer needs to store and
update the collection overlap information between peers with a
view to the potential intersection between their returned documents

Algorithm 1 Overlap Profile Update Algorithm
Input: a set of neighbors P , current time t, current query Q

for all (pi, pj) ∈ P × P and i 6= j do
for all k ∈ Q do

if wo(pi,pj),k not exist then
wo(pi,pj),k(t) = a ·O(pi, pj)Q

else
wo(pi,pj),k(t) = (1− a) · wo(pi,pj),k(t− 1)

+a ·O(pi, pj)Q
end if

end for
end for

for answering prospective queries. In our design, we let each peer
maintain an information matrix W o for storing collection over-
lap knowledge. In this matrix, each row corresponds to a pair of
peers and each column corresponds to a keyword. Thus an element
wo(pi,pj),k ofW o represents the degree of collection overlap of peer
pi to pj corresponding to keyword k. Note that a peer only stores
the overlap information of other peers with whom it interacts. The
space required to storeW o and the time to update its entries can be
bound by the peer application’s available memory or storage.

Algorithm 1 describes how peers update their collection overlap
matrix. When a peer receives responses to a query Q, it computes
the collection overlap of pi to pj corresponding to Q. Based on
this calculation, the peer assesses the collection overlap of pi to pj
with respect to each keyword k ∈ Q and then updates the element
wo(pi,pj),k with a learning rate parameter (0 < a < 1). Overlap
scores are continuously updated as peers learn about each other, so
that it is possible to keep track of dynamic changes in peer content.

2.2 Collection Coverage
In a peer network, the query-specific collection coverage of a

peer p can be simply defined as the ratio of the relevant information
to a query that is retrieved from p compared to the total relevant in-
formation retrieved from the network. But quantifying the amount
of retrieved relevant information in order to compute the collec-
tion coverage is a rather difficult task. To cope with this problem,
we propose a collection coverage approximation (described below)
that takes into account not only the size of the peers’ responses but
also the relevance of each individual result.

The first step for computing the collection coverage is to re-rank
the whole set of retrieved documents. A method introduced by
Lee [10] is adopted to change the rank of each retrieved document
by a peer p into a normalized rank score: RSd = 1 − Rd−1

|Hp|
where RSd is the rank score of document d, |Hp| is the number
of documents retrieved by p, and Rd is the rank of document d
in Hp. (The dependence on a query Q is implicit in this and the
following equations to simplify the notation.) Note that a document
with lower rank value (more relevant) will yield a higher rank score.
By converting ranks into rank scores, the rank scores of documents
retrieved are redistributed between 0 and 1 while preserving the
original rank relationship among documents. Next, we combine the
rank scores of documents returned by different peers by applying a
data fusion approach proposed by Shaw and Fox [12] (alternatives
may be explored in future work): CRSd =

P
p∈P RS

p
d where

CRSd is the combined relevance score for document d, RSpd is the
normalized rank score for document d returned by peer p, and P is
the set of peers that respond to the given query. The idea is that a
document will be given more ranking weight if more peers return

Algorithm 2 Coverage Profile Update Algorithm
Input: a set of neighbors P , current time t, current query Q

for all pi ∈ P do
for all k ∈ Q do

if wcpi,k
not exist then

wcpi,k
(t) = b · T (pi, Q)

else
wcpi,k

(t) = (1− b) · wcpi,k
(t− 1) + b · T (pi, Q)

end if
end for

end for

this document with good rank.
Once the combined relevance scores for each retrieved document

are in hand, the retrieved documents are re-ranked by these scores
and the information score of each individual document can thus be
computed as: ISd = n − R′d + 1 where ISd is the information
score of document d, n is the total number of documents retrieved
from the network and R′d is the new rank of document d according
to CRS. Note that, by using IS, a document with lower (better)
rank will yield a higher information score.

Finally, the collection coverage of a peer p with respect to a
query Q can be computed as the ratio between the sum of the in-
formation scores of documents retrieved by p and the sum of the
information scores of all documents retrieved from the network:

T (p,Q) =

Pn(p)
d=1 ISdPn
h=1 ISh

(2)

where n(p) is the number of documents retrieved by peer p for
queryQ, and n is the total number of documents retrieved from the
network for the same query.

In an analogous way to collection overlap, each peer will
maintain an information matrix W c for storing collection coverage
knowledge. In this matrix, each row corresponds to a peer and
each column corresponds to a keyword. Thus an element wcp,k of
W c is the collection coverage of peer p estimated for keyword k.

Algorithm 2 describes how peers store and update their collec-
tion coverage information. When a peer receives responses to a
query Q, it computes the collection coverage of p corresponding to
Q. Based on this calculation, the peer assesses the collection cov-
erage of p with respect to each keyword k ∈ Q and then updates
the element wcp,k with a learning rate parameter (0 < b < 1).

2.3 Peer Selection
Given the collection overlap and coverage matricesW o andW c,

we can now select the actual set of N neighbors among the known
peers to whom a query is to be sent. N is a peer parameter that can
be set based on available bandwidth and computing power. To this
end we also need a system dependent way to assess the similarity
between a query and a peer. Wu et al. [16] proposed a peer profil-
ing algorithm based on a keyword vector representation of peers.
Therefore let us assume here that a similarity function σ(p, k) to
predict the match of keywords with other peers’ knowledge is avail-
able based on such a representation.

Algorithm 3 demonstrates how collection overlap and coverage
can be used in conjunction with the peer profile representation [16]
to select a set of neighbors with potentially higher precision and re-
call compared to selecting neighbors using the profile-driven sim-
ilarity function σ alone. The peer selection process begins with
selecting a single known peer as a starting point. The first peer
selected is the top-ranked peer based only on the query-profile sim-

Algorithm 3 Peer Selection Algorithm
Input: a set of known peers P , a query Q, number of selected
neighbors N , matrices W o and W c, similarity function σ
Output: a set of selected peers S (|S| = N)

pj = argmaxpj∈P [σ(pj , Q)]
S ← {pj}
P ← (P − {pj})
for i← 2, N do

for all px ∈ P do
for all k ∈ Q do

C[px, k] = (1−
P
py∈S w

o
(px,py),k) · wc(px,k)

end for
end for
px = argmaxpx∈P [

P
k∈Q

2·σ(px,k)·C[px,k]
σ(px,k)+C[px,k]

]

S ← S ∪ {px}
P ← (P − {px})

end for
return S

ilarity σ(p,Q).
Once the first peer is identified, it is added to the list S. The

next step is to continue a selection loop until the rest N − 1 peers
are chosen. In each iteration, we initially compute the similarity
σ between each px in P and each k in Q. Then we compute the
contribution C of each px corresponding to each k with respect to
S (peers that are already selected as neighbors) by using the collec-
tion overlap and coverage information. For example, to compute
the contribution C of a peer, say p2, corresponding to a given key-
word, we discount the collection coverage of p2 by the complement
of the collection overlap of p2 to another peer, say p1, given that
p1 is already selected for query forwarding. Finally, the peer with
the highest value of the harmonic mean (based on the F1 measure
traditionally used in IR to combine precision and recall) of σ and
C (summed over all keywords in the query) is selected as another
neighbor and moved from P to S. The idea is to send the queries
to peers that are likely to have lots of relevant information, but not
the same as other selected peers.

Figure 1: Multi-peer collection overlap. The unique ratio
in px’s collection is 1 − a − b − c, while its approxima-
tion obtained by using pairwise overlap (Algorithm 3) is 1 −P
pi∈S w

o
(px,pi),k

= 1 − [(a + b) + (b + c)] = 1 − a − 2b − c.
Our algorithm underestimates the contribution of px by b.

Another challenge needs to be addressed here — the multi-peer
collection overlap problem. Figure 1 shows a diagram of the collec-
tion overlap relationship with respect to a keyword k among three
peers px, p1, and p2 where p1 and p2 are already selected as two
content providers. To compute the contribution C[px, k] in Algo-
rithm 3, we need to calculate the coverage discount factor corre-
sponding to the collection overlap among px, p1 and p2. It is not

difficult to observe that the actual value (1 − a − b − c) is larger
than the computed value (1−a−2b−c). Since our goal is to com-
pare quality responses among known peers for query routing, we
hypothesize that using only the pairwise collection overlap infor-
mation should provide us with an efficient and sufficiently accurate
approximation.

3. RESULTS

3.1 Experimental Setup
To illustrate and validate the diverse peer selection algorithm de-

scribed in the previous section we use sixearch.org, a freely
available intelligent multi-agent Web search application, as an ex-
ample of peer-based Web search system. A detailed description of
its protocols and algorithms is out of the scope of this paper and
can be found elsewhere [16].

Two collection testbeds ASISWOR and ASISWR [9] built upon
TREC’s WT10g collection were used for our computer simulations.
Briefly, to construct ASISWOR, documents in TREC’s WT10g col-
lection are clustered into different groups based on Web domains.
To construct ASISWR, the ASISWOR was modified by pulling into
each document group all the documents from other domains linked
by any document in the group. The average document replica-
tion rate of ASISWR is about 1.2. In addition, five other collection
testbeds were also created by duplicating each document group in
ASISWOR for 3, 5, 10, 15, and 32 times with the purpose of model-
ing different degrees of document replication within the collection.

The document groups of the collection testbeds are randomly and
evenly assigned to 500 synthetic peers. Peers were allowed to dis-
cover all other 499 peers and to contact 5 neighbors for any query.
The peer network was initialized as a random Erdos-Renyi graph,
i.e., each peer was assigned 5 random neighbors drawn from a uni-
form distribution. Each peer in our experiments has 10 queries,
randomly selected from the TREC’s WT10g data collection, as its
own local queries. Finally we set the TTL (time to live), a standard
technique to limit congestion and loops in any network protocol, to
2 and ran the simulator for about 600 time steps.

Our simulation programs took a snapshot of the network at every
time step. In a single time step of the simulator, all of the peers
process all of their buffered incoming messages and send all of
their buffered outgoing messages.

3.2 Evaluation Measures
Traditional precision and recall measures for evaluating search

performance cannot capture the proper costs of distributed search
applications because they do not take into account the fact that users
are not willing to wait for a long time (latency) and the fact that
users have finite bandwidth.

In a distributed information retrieval system, network latency
and bandwidth are reflected in how much time the system needs for
retrieving documents for a given query, and how many peers it can
communicate with. To compare different distributed systems, we
have to consider these factors as an integral part of the evaluation,
because it is of little use to aim for perfect results if it takes hours
to retrieve them. To this end, let us introduce two novel criteria
for evaluating distributed search performance: distributed precision
and distributed recall.

Let H be a set of retrieved documents from a network for some
query, U a subset of H (|U | < |H|) containing only the unique
and relevant documents, R the set of all relevant documents within
the network, and f(u) the maximum routing distance (number of
hops) between the originator of the query and the peer(s) returning
document u ∈ U . Distributed precision Π is defined as the ratio

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

di
st

rib
ut

ed
 p

re
cis

io
n

distributed recall

sixearch peer selection algorithm
diverse peer selection algorithm

Figure 2: Precision-recall plot for diverse peer selection algo-
rithm and sixearch.org peer selection algorithm with 15
duplicates per document. The ranking of the results obtained
by each peer is performed after all results are received from
other peers and combined.

of the weighted relevant hits count to the total network bandwidth
needs (i.e. the total number of retrieved documents, whether unique
or duplicate):

Π =

P
u∈U f(u)−1

|H| . (3)

Distributed recall Θ is defined as the ratio of the weighted relevant
hits count to the total number of relevant documents within the
entire peer network:

Θ =

P
u∈U f(u)−1

|R| . (4)

Note that, the numerator in Equations 3 and 4 is used as a weight to
capture both relevance and latency. The idea is that the longer the
query travel distance, the longer the waiting time. Hence, unlike
in traditional information retrieval where every hit counts as the
same credit, in the distributed case a hit is given higher credit if it
is retrieved from a closer neighbor (i.e. in a shorter waiting time).

Another issue addressed by distributed precision is that we use
the total number of retrieved documents |H| (including duplicates)
in the denominator of Equation 3 instead of the number of unique
retrieved documents. To search in a peer network, the query origi-
nators have to download the results provided by other peers to their
local disks for further ranking and combining. Therefore, it is in-
evitable for a peer to spend some bandwidth retrieving some hits
that are already known. This will incur transfer costs without yield-
ing benefit for the peer, and distributed precision takes these costs
into account when evaluating search performance.

3.3 Experimental Results
Let us analyze the results obtained from our simulations. First

we focus on the improvement in search performance between dif-
ferent peer selection algorithms. We also want to see how the
search quality changes over different peer network configurations
modeled by the degree of document duplication.

Figure 2 shows a precision-recall plot in one simulation with 15
duplicates per document. Diverse peer selection outperforms the
sixearch.org algorithm by improving both distributed preci-
sion and distributed recall. Note that traditional precision and re-
call would not be able to discriminate between the two algorithms,

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 1 2 4 8 16 32

F

duplicates per document

sixearch peer selection algorithm
diverse peer selection algorithm

Figure 3: F-measure for diverse peer selection algorithm and
sixearch.org peer selection algorithm with different degree
of document replication within the collection.

because both can eventually find the same number of relevant doc-
uments, although in one case we have to wait longer and waste
bandwidth by retrieving many copies of the same document. Se-
lecting diverse peers alleviates both of these costs.

To illustrate how the actual search performance changes with the
degree of document duplication across peers, we plot the F mea-
sure, which combines (distributed) precision and recall through
their harmonic mean, versus document duplication for both
sixearch.org and the diverse peer selection algorithms, as
shown in Figure 3. It is not surprising that the search performance
of the sixearch.org and diverse peer selection both increase
with the number of duplicates per document, since there are more
documents served by each peer. More meaningful is the favorable
comparison between the sixearch.org and diverse peer
selection algorithms. The latter outperforms sixearch.org for
higher duplication, and we attribute this to the better cumulative
coverage achieved by the diverse peer selection.

4. DISCUSSION
In this paper we introduced a diverse peer selection approach

to explore the idea that the coverage limitations of peer-based dis-
tributed information retrieval systems can be overcome by integrat-
ing collection overlap awareness into the query routing strategy.
We also described two novel performance measures, distributed
precision and distributed recall, to incorporate the key bandwidth
and latency costs of networks into the evaluation of distributed in-
formation retrieval systems. Our experiments suggest that diverse
peer selection outperforms the sixearch.org selection algo-
rithm, an existing query routing approach that does not consider
collection overlap and thus cannot select peers for better coverage
of the search space.

Several issues are under investigation. We will use parameter
sweep experiments to analyze the sensitivity of search performance
to network traffic, e.g. due to different numbers of contact neigh-
bors corresponding to various TTL values. We also would like to
explore different strategies for choosing the first peer in the diverse
peer selection algorithm. This could make a significant difference
for the search results. The function used to combine the query-
profile similarity and the query specific contribution in Algorithm 3
can be further studied. Additionally, we plan to study the use of
reinforcement learning algorithms for identifying good neighbors
(neighbors that can provide relevant and novel results) not only

with their individual performance but also that of their neighbor-
hoods. Finally, the issue of how duplicates can be identified among
retrieved documents needs further study. In our current design, we
use URL comparisons as a simple way to identify duplicate pages.

5. REFERENCES
[1] R. Akavipat, L.-S. Wu, F. Menczer, and A. G. Maguitman.

Emerging semantic communities in peer Web search. In
Proc. of CIKM P2PIR, 2006.

[2] M. Bawa, R. Bayardo Jr, S. Rajagoplan, and E. Shekita.
Make it fresh, make it quick — searching a network of
personal webservers. In Proc. of the 12th Intl. WWW Conf.,
2003.

[3] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving collection selection with overlap
awareness in p2p search engines. In Proc. of the 28th Intl.
SIGIR Conf., pages 67–74, New York, USA, 2005.

[4] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13(7):422–426, 1970.

[5] A. Crespo and H. Garcia-Molina. Semantic overlay networks
for P2P systems. Technical report, Computer Science
Department, Stanford University, 2002.

[6] P. Haase, R. Siebes, and F. van Harmelen. Peer selection in
peer-to-peer networks with semantic topologies. In ICSNW,
pages 108–125, 2004.

[7] T. Hernandez and S. Kambhampati. Improving text
collection selection with coverage and overlap statistics. In
Proc. of the 14th Intl. WWW Conf., pages 1128–1129, New
York, USA, 2005.

[8] S. Joseph. Neurogrid: Semantically routing queries in
Peer-to-Peer networks. In Proc. of Intl. Workshop on
Peer-to-Peer Computing, 2002.

[9] I. A. Klampanos, V. Poznański, J. M. Jose, and P. Dickman.
A suite of testbeds for the realistic evaluation of peer-to-peer
information retrieval systems. Lecture Notes in Computer
Science, 3408:38–51, 2005.

[10] J. H. Lee. Analyses of multiple evidence combination. In
Proc. of the 20th Intl. SIGIR Conf., pages 267–276, New
York, USA, 1997.

[11] J. Lu and J. Callan. Content-based retrieval in hybrid
peer-to-peer networks. In Proc. of the 12th Intl. CIKM Conf.,
2003.

[12] J. A. Shaw and E. A. Fox. Combination of multiple searches.
In Text REtrieval Conference, pages 0–, 1994.

[13] C. Suel, T amd Mathur, J.-W. Wu, J. Zhang, A. Delis,
M. Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A Peer-to-Peer architecture for scalable Web
search and information retrieval. In Intl. Workshop on the
Web and Databases (WebDB), 2003.

[14] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information
retrieval using self-organizing semantic overlay networks. In
Proc. of SIGCOMM ’03, 2003.

[15] C. Tempich, S. Staab, and A. Wranik. REMINDIN’:
Semantic query routing in peer-to-peer networks based on
social metaphors. In Proc. of the13th Intl. WWW Conf.,
pages 640–649. ACM Press, 2004.

[16] L.-S. Wu, R. Akavipat, and F. Menczer. 6S: Distributing
crawling and searching across Web peers. In Proc. of the
IASTED Intl. Conf. on Web technologies, Applications, and
Services, Calgary, Canada, 2005.

