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Abstract—Online popularity has enormous impact on opinions,
culture, policy, and profits, especially with the advent of the social
Web and Web advertising. Yet the processes that drive popularity
in our online world have only begun to be explored. We provide
a quantitative, large scale, longitudinal analysis of the dynamics
of online content popularity in two massive model systems, the
Wikipedia and an entire country’s Web space. In these systems,
we track the change in the number of links to pages, and the
number of times these pages are visited. We find that these
changes occur in bursts, whose magnitude and time separation
are very broadly distributed. This finding is in contrast with
previous reports about news-driven content, and has profound
implications for understanding collective attention phenomena
in general, and Web trends in particular. To make sense of
these empirical results, we offer a simple model that mimics
the exogenous shifts of user attention and the ensuing non-linear
perturbations in popularity rankings. While established models
based on preferential attachment are insufficient to explain the
observed dynamics, our stylized model is successful in recovering
the key features observed in the empirical analysis of our systems.

I. INTRODUCTION

The advent of Web 2.0 and social media is fostering Web-
mediated brokers such as blogs, wikis, folksonomies, and
search engines, through which anyone can easily publish
and promote content online. Popular sources have formidable
power to impact opinions, culture, and policy. We know
that Web traffic, one measure of popularity, is very broadly
distributed [1]. Yet the dynamics that drive popularity in our
online world are still unclear and largely unexplored, with
a few exceptions discussed in the next section. Today, the
availability of data about large Web collections with their
temporal history makes it possible for the first time to study
the dynamics of online popularity at the global system scale.

Here we begin to address these questions by studying
popularity trends in the Web and Wikipedia. For example,
different Wikipedia topics have different traffic behaviors, as
illustrated in Figure 1. We would like to devise an analytical
framework to look for regularity across such diverse patterns
of change.

Better understanding of these trends could have broad appli-
cations. One obvious area is in improving the efficiency of the
online advertisement market. Advertisers and advertisement
providers, armed with knowledge of what might be popular

Fig. 1. Comparison between the temporal traffic patterns of three
different Wikipedia topics, visualized by wikirank.com. ‘Biology’
(top) displays a predictable weekly cycle, as well as peaks in demand
around final exam weeks. ‘Barack Obama’ (center) and ‘Michael
Jackson’ (bottom) are instead dominated by exogenous news events.

in the coming days or weeks, would be able to bid more ef-
ficiently for advertisement keywords. Another area of interest
is that of detecting Web spam. Some modern methods for this
task involve analysis of the structure of the Web link graph [2].
Viewing the degree of a page as a popularity measure allows
us to better analyze how this graph grows and changes, helping
us determine what is normal and what is suspect. Such analysis
could also aid the detection of advertisement click fraud. Here,
equipped with good characterizations of normal traffic patterns
for advertisement sites, the goal would be to better detect
anomalous patterns of access. Finally, better understanding
of traffic behavior could help methods for ranking pages that
depend on traffic, such as that proposed by Liu et al. [3].

Contributions and Outline

Here we study the dynamics of the accumulation of attention
in social media and the Web at large, finding that they are char-
acterized by wild burst events separated by extended phases
in which growth is more regular. Our main contributions are
summarized as follows:
• A compilation of three large data sets, with sufficient

pre-processing to make them manageable. We use the
logarithmic derivative to scale popularity changes in a



way that is robust with respect to different system sizes
and growth patterns — §III.

• The analysis of these popularity measures and data sets,
revealing bursty dynamics with broad distribution of both
the size of the bursts, and the intervals between them —
§IV.

• A comparison with existing growth models, which do not
explain the empirical data. We therefore propose a new
rank-shift model that fits the observed dynamics of online
popularity — §V.

II. RELATED WORK

Several studies have used crawl data to analyze the temporal
evolution of the Web, focusing on creation and destruction of
pages, links, and the frequency and amount of change in page
content [4]. This approach, however, does not allow to track
individual pages or sites longitudinally in order to accurately
monitor their popularity over time. Kleinberg [5] studied the
bursts associated with identifiable events in streams, such as
the occurrence of a key phrase in a news feed. This approach
allows to detect hot topics as temporal bursts in word usage.
Kumar et al. [6] expanded this notion to analyze the evolution
of bursty communities in blogs. They also developed the
concept of time graphs, which is similar to our methodology
for tracking temporal patterns of popularity.

Focusing on indegree as a popularity measure, several
models have been proposed to interpret the evolution of this
quantity. The best known network growth model is preferential
attachment [7]. This model starts with a small random graph
and iteratively adds new nodes, each linked to existing nodes
with a probability that is a linear function of their indegree.
An equivalent model, proposed by Kleinberg et al. [8], has
the additional advantages of proposing a simple mechanism
by which this linking behavior might come about, and not
requiring page authors to have global knowledge of the net-
work. Topological features can also be combined with content
information to interpret the emergence of topical locality in the
Web [9]. Other recent developments in modeling the growth of
graphs are two models proposed by Leskovec et al.. The first
is a triangle-closing model for social networks [10], and the
second is the “forest fire model” which attempts to capture the
changing density and diameter of growing graphs [11]. These
are members of the “rich-get-richer” class of models, to which
the classical preferential attachment model also belongs.

In rich-get-richer models, it is extremely rare for any node
to radically change its ranking. We will see that in the systems
we intend to model, pages can rapidly acquire disproportionate
attention. Therefore, the model we propose in this paper builds
on the ranking model by Fortunato et al. [12], which allows us
to represent ranks explicitly. This simple model grows a net-
work by iteratively adding nodes, and connecting a new node
to some existing nodes i with probability p(i) ∼ r−δi ; here, ri
is the rank of node i as determined by some arbitrary ranking
mechanism. When the rank of a node is determined by its
indegree, this model is a robust generalization of preferential
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Fig. 2. Time series of indegree k and its logarithmic derivative
∆k/k for two Wikipedia topic pages. Topics typically experience
a burst in their early life. The ‘Biology’ page then maintains a
small rate of growth. The article about Jennifer Hudson, however,
experiences more fluctuations later in its life. Jennifer Hudson is
an artist who became popular through a television show leading to
her first burst. Another burst occurred when she won an Academy
Award; degree popularity doubled as many other pages linked to
the article (inset). Another popularity measure is also shown for the
‘Jennifer Hudson’ page; the size of each circle is proportional to the
logarithmic derivative of the number of times the article is revised.
The article receives more edits when it attracts more links.

TABLE I
DATASET SUMMARY STATISTICS.

Temporal
Vertices First Last Resolution

Wiki k 3 293 102 Jan 2001 Mar 2007 1 sec.
Wiki s 3 490 740 Feb 2008 Current 1 hour

Chile k 3 252 779 2001 2006 1 year

attachment; it is also robust with respect to other choices of
the ranking mechanism and incomplete rank information.

Some prior work on the topic of popularity dynamics has
focused on news. Wu and Huberman [13] performed a large-
scale study of the news sharing site Digg.com, where users
can promote links to articles they like by voting for them.
The authors tracked the total number of votes that each story
receives through its lifetime, finding that this quantity follows a
lognormal distribution. They further examined the decay rate
of incoming votes for a story, providing insight into how a
story’s relative popularity waxes and wanes over its lifetime.
When we broaden our range in considering any online Web
page or topic, the distributions of the popularity measures we
study on the Web and Wikipedia — node indegree and traffic
— fit a power law much better than a lognormal (as discussed
in §IV). This is indicative of the distinct underlying dynamics
in each of these systems. In the information networks we study,
the popularity of a topic may be influenced by many news
events over an indefinite timespan. Therefore the behavior of
online popularity cannot in general be characterized by that of
individual news-driven events.



Other recent work on human activity in the Web at large
has focused on search engines [14] and Web traffic [1]. In
the latter study, Meiss et al. find that the distribution of the
traffic directed at hosts on the internet is very broad, well
fit by a power law with exponent less than 2. Thus, it is not
meaningful to consider the “average” popularity of a Web host.
These findings were confirmed in a later study on a different
dataset [15].

The popularity of videos on the YouTube video sharing site
has been studied by Szabo and Huberman [16] and Crane
and Sornette [17]. These dynamics are found to be similar to
those of news, but with different popularity classes depending
on whether a video has been featured on the front page of
the site, or is the type that is likely to be spread by social
networks (a so-called viral video).

In a companion paper, we explore various aspects of traffic
patterns through social information networks [18]. We find that
many bursty Wikipedia topics exhibit a strong correlation with
appropriately chosen queries on Google Trends, suggesting
that these bursts are often driven by external events.

All of these studies suggest that the dynamics of information
access and popularity follows a bursty, intermittent behavior.
It is unclear how this affects the global processes ruling the
popularity accumulation and evolution in large scale informa-
tion systems [19], [20]. Several of these studies show that
when users have access to popularity rankings (e.g. YouTube
views or presence of a book on the New York Times bestseller
list), they are more likely to disproportionately favor popular
items [17], [20], [21].

An initial issue facing a study of the sort presented in this
paper is the identification of a suitable popularity measure.
In recent years, the mapping of large, complex information
networks [22]–[24] has led to identifying the number of links
pointing to a node (its indegree) as a proxy of popularity in
many domains. The evidence that many social, technological,
and information networks are characterized by stable heavy-
tailed distribution of indegree pointed to a strong heterogeneity
in the popularity and triggered the formulation of models
aimed at explaining the emergence of such broad distributions
using rich-get-richer mechanisms [25] based exclusively on
topology [7], [8] or combined with content information [9].
While these models have the merit of introducing irreversible
growth as an important element of network generation, the
dynamics characterizing these rapidly changing systems have
been seldom studied because to date it has been infeasible to
observe the actual growth of an online network. The datasets
we utilize, however, contain longitudinal information that
makes it possible to observe their growth. Further we have
access to traffic data, which we consider a more direct proxy to
popularity as it represents human attention more immediately.

III. METHODOLOGY

We analyze three large scale data sets about two information
networks for which it is possible to gather longitudinal infor-
mation: the entire Wikipedia and the Chilean Web. Wikipedia
is a large collaborative online encyclopedia. Since its inception

in 2001 the English version, on which we focus, has grown
to contain millions of articles and hundreds of thousands of
registered contributors (en.wikipedia.org). The availability of
the full edit history of every article makes it possible to recon-
struct the entire Wikipedia structure at any past point in time,
and track it at any temporal granularity. Our data was obtained
from a March 2007 dump (download.wikimedia.org). Traffic
data with hourly temporal resolution is obtained by cross-
referencing with a separate data set (dammit.lt/wikistats). Our
third data set is a yearly sequence of crawls of the Chilean
Web. This data was made available by courtesy of the TodoCL
search engine (www.todocl.com), and consists of one complete
crawl of the .cl top-level domain for each of the years 2002–
2006.

The representative graphs of each of these data sets have
been previously studied, and found to have the important
properties of the Web graph at large [26]–[28] — namely,
each shows a scale-free distribution of degree. Analyses of the
temporal dynamics of the Wikipedia have further shown that
the number of articles, their updates, visitors, and registered
editors have been growing exponentially until recently, and
the indegree distribution has stabilized very early to the same
power law as the Web at large [29], [30].

In both data sets we track the time evolution of the indegree
k of documents. In Wikipedia the high temporal resolution
allows us to analyze this measure as a function of real time or
age since the creation of a page, and using different timescales
— e.g. months, weeks, or days — over the entire edit history.
For the Chilean Web we can track the indegree with the time
resolution of a year. In Wikipedia we also track the number
of times s that an article is actually visited; traffic is a more
direct measure of the interest generated by each topic.

With each of the three data sources — Chilean Web, Wiki-
pedia articles, and Wikipedia traffic counts — we produced a
matrix in which the rows correspond to nodes and columns
to timestamps, with each entry in the matrix referring to the
value of the popularity measure for that node and timestamp.
For the Chilean Web and Wikipedia articles this popularity
measure is indegree (k); for Wikipedia traffic it is incoming
traffic, s. Details on this derivation are below, and some vital
statistics on each dataset are shown in Table I.

A. Chilean Web

This data comprises a complete crawl of the Chilean Web
for each of the years 2002–2006. Its compilers have done
further processing including the computation of indegree.
Thus, computing the matrix was a simple matter of extracting
the indegree for each page from each crawl from a proprietary
format [31].

B. Wikipedia articles

This data is provided as a single compressed XML file; we
obtained the English Wikipedia dump for March 2007. To our
knowledge more recent dumps do not exist due to the difficulty
of creating them. This file contains the full text of every
revision for every page, as well as some metadata, including
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(a) ∆k/k for Chilean Web indegree, with
temporal resolution of one year.
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(b) ∆k/k for Wikipedia indegree, with
temporal resolution of one month, as mea-
sured in January over several years.
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(c) ∆s/s for Wikipedia traffic, with tem-
poral resolution of one week, as measured
over a few months in 2008.

Fig. 3. Distributions of logarithmic derivative of popularity. The gray areas highlight the broad tails of the distributions. These behaviors are
consistent across a wide range of temporal resolutions, from a week to a year. The inset of each figure shows the cumulative distribution,
P (X > x). In the remainder of the paper, for ease of exposition we show only log-binned PDFs, though cumulative distributions do not
change the results.

the time and the author of the revision. Uncompressed, it is
about 1.3 TB in size. We first computed the outlinks of each
page at each relevant timestep, as determined by its most
recent revision at that point. We then used these sets of outlinks
to compute each page’s indegree at each point in time. We
ignored meta pages, such as discussion, user, and image pages.
We further re-mapped links around redirect pages so that a link
to a redirect page counts as a link to its actual target.

While it has been observed that the growth of the Wikipedia
has slowed of late, our data refers to a time period in which
the English Wikipedia as a whole was growing exponentially
(e.g. in number of topics).

C. Wikipedia traffic

This data set comes from a person involved in the Wiki-
pedia project who has been logging hits to the Wikipedia proxy
server. The data is formatted as compressed text files, one for
each hour, which record tuples of (language code, article title,
count). Thus, computing traffic for English Wikipedia pages
was a simple matter of excluding those tuples which referred
to non-English pages, or to irrelevant URLs. This pruning was
accomplished in the case of non-English pages by considering
the language code. As for Wikipedia articles, pages with a
colon in their title were removed. We further aggregated the
data to obtain a temporal resolution of one day. The collection
of this data began in February 2008, almost a year after the
end of the Wikipedia article dataset. This makes it impossible
to directly compare a page’s in-strength with its indegree for
the same time period.

D. Measures

To quantitatively study the dynamics of any time dependent
popularity measure xt, it is convenient to consider its logarith-
mic derivative [∆x/x]t = (xt − xt−1)/xt−1, where t refers
to units of time. This allows us to compare the dynamics of
pages with different popularity while discounting the overall
growth of the underlying system, which is not uniform across
data sets. Figure 2 illustrates the logarithmic derivative of
the indegree of two example pages in the English Wikipedia.
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Fig. 4. Distribution of the time interval ∆t between consecutive
indegree bursts of Wikipedia articles. The three curves correspond to
different time resolutions of months, weeks, and days, aligned on the
x-axis for ease of visualization. As we increase the resolution the tail
of the distribution extends further, an indication that the cutoff is a
finite size effect. As a guide to the eye we show a power law p(∆t) ∼
(∆t)−β for β ≈ 0.8± 0.1, taken from a maximum-likelihood fit to
the data.

Despite a roughly exponential growth in the popularity of both
topics, the logarithmic derivative provides a signature by which
the two profiles can be compared on the same scale. Almost
all pages experience a burst in ∆x/x near the beginning of
their life,1 and many receive little attention thereafter. While
some pages maintain a nearly constant positive logarithmic
derivative indicating an exponential growth, a number of pages
continue to experience intermittent bursts in ∆x/x later in
their life. While the logarithmic derivative can be negative —
indicating a decrease in popularity — we neglect these rare
events and focus on the positive values.

IV. RESULTS

As a first step, we confirmed scale-free distributions of
popularity in our Wikipedia data, finding each (both indegree
and traffic) to be well modeled by a power-law distribution,
with the obvious exponential cutoff determined by the finite
size of the network. This was done by using maximum

1We ignore the initial step of a page’s life, where x = 0 and ∆x/x would
be undefined.



likelihood methods [32], checking the Kolmogorov-Smirnoff
statistic to rule out a lognormal model. This is in agreement
with other studies for the Wikipedia, and with results for the
Web at large. We know from Baeza-Yates and Poblete [26]
that this is also true in the Chilean Web data we study. We
next turn our attention to the distribution of the log derivative
of popularity ∆x/x.

The distribution of the magnitude of ∆x/x for the two pop-
ularity measures at representative time resolutions is illustrated
in Figure 3. All curves provide evidence for a wide variability
of the burst magnitude that spans 8 orders of magnitude. In all
cases and at all granularity it is possible to observe a heavy-
tail behavior for the occurrence of large magnitude events. The
observed long tails are stable and fairly well approximated by
a power law p(∆x/x) ∼ (∆x/x)−α with exponent α between
1.9 and 2.6 estimated by maximum likelihood methods [32].
This indicates that a statistically appreciable fraction of events
corresponds to increases in popularity by factors of 10–103

or more. Such a disproportionate jump of interest occurs not
only for young or lesser known pages, but for a broad range of
popularity, which we confirmed by considering the distribution
of degree for for pages about to experience a burst, before the
burst occurred. In all three datasets these distributions were
broad; while they were not as broad as the overall degree
distribution, we can conclude by this that even pages with large
indegree can still experience dramatic changes. Yet additional
evidence is that when pages below a certain age (e.g. 3 months)
are ignored, the distributions in Figure 3 are unchanged. In
other words, these popularity spikes are statistically possible
for all documents almost independently of their popularity.

The heavy-tailed burst magnitude distributions suggest a
dynamics characterized by the lack of a typical scale for mea-
suring the bursts. This is typical in a wide range of “critical”
physical, economic, and social systems, such as avalanches,
earthquakes, and stock market bubbles and crashes [19], [33],
[34], but it had never before been observed in information
networks.

Another way to characterize the dynamics of bursty systems
is to study the distribution of times between successive events.
In traditional systems where this behavior is modeled by
queueing theory, we expect this distribution to be Poissonian.
On the other hand, systems that lack a typical scale in the event
size are generally associated with a lack of characteristic time
scale and to long-range time correlation among consecutive
events. To test the presence of non-Poissonian dynamics we
analyzed the time distribution between bursts, shown in Fig-
ure 4 for the English Wikipedia. We consider bursts such that
∆k/k > 1 after January 1st, 2003. This necessarily includes
pages which undergo smaller bursts (in absolute terms); e.g.
pages whose popularity measure goes from 1 to 2. However,
we observed that thresholding did not change the statistical
properties of burst events — recall that even pages with high
popularity can experience large bursts. The intervals between
bursts are broadly distributed in a power-law fashion with
a finite size cutoff, as in Omori’s law of earthquakes and
other avalanche phenomena [35]. The analogy between online
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(b) Empirical distribution of time between bursts ∆t (in
normalized units) in the English Wikipedia, together with the
distribution generated by a preferential attachment model. This
is the same data as in Figure 4, and the fact that the lines
overlap when using normalized time units (except for finite
time cutoff) supports the power-law fit (cf. Figure 4). However,
the PA distribution fits an exponential P (∆t) ∼ e−∆t/τ with
parameter τ = 0.8.

Fig. 5. Comparison of the empirical data with what would be
expected from a preferential attachment process. The PA process fails
to produce wide distributions of event size and temporal spacing.

popularity dynamics and critical avalanche phenomena calls
for a stylized model able to explain the observed features in
terms of shifts in collective attention.

V. MODELING POPULARITY TRENDS

A. Preferential Attachment

Among the many growth models in the general family of
preferential attachment, we chose the directed version [36] of
the linear preferential attachment model [7] as a baseline, and
used it to generate a graph. This rich-get-richer mechanism
does produce graphs with the same degree distribution as in
our data sets; however, preferential attachment alone fails to
reproduce the long tails observed in the distributions of both
∆k/k and inter-burst time (Figure 5).

Another way to explore the limitations of PA in explaining
the observed dynamics is to visualize the relationship between
the rank of a node’s indegree k at a given time step, and its
behavior in the time step that follows. In Figure 6(a) we show
a scatter plot comparing a node’s rank in k at time t with
its rank in k at time t + 1. Figure 6(b) similarly shows the
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Fig. 6. Scatter plots visualizing changes in rank of k and ∆k
between timesteps. In preferential attachment, the ranking based
on degree (and change in degree) should be nearly static between
timesteps, producing points only on the main diagonal of the plots.
The presence of points well off the main diagonal indicates change
not well correlated with present degree.

relationship between a node’s rank in k at time t and its rank in
∆k at time t+1. This visualization suggests that the empirical
data has an underlying preferential attachment component, but
with a strong chance of large changes, especially for nodes of
lower degree.

B. A Rank-Based Model

Seeking a very simple model able to capture the critical
dynamics observed empirically, we note that the accumulation
of attention is not obviously related to the exact degree of
a document, information that is seldom available. Popularity
is instead likely related to the relative ranking that is always
established by users according to some criterion: age, degree,
relevance to a user query (if the nodes are Web pages), or
some arbitrarily distributed prestige function. We consider a
generalization of the ranking model [12] where items are
sorted according to some popularity criterion and accumulate
units of popularity such that the probability that an existing
item i receives a unit is p(i) ∼ r−δi , where ri is the rank of
i according to some arbitrary ranking function, and δ > 0 is
a free parameter. This simple model leads in the asymptotic
limit to scale-free popularity distributions p(x) ∼ x−γ , where
γ = 1 + 1/δ. The behavior is very robust with respect
to choices of the ranking criterion and of the exponent δ.
We stress that, since popularity is distributed based on the
ranks of the nodes, and not on their popularity values, the
ranking model does not belong to the class of fitness-based
models [37], [38].

In our study of Web and Wikipedia pages we focus on
the statistics of extreme events, represented by popularity
“bursts.” We define a burst as a variation of popularity ∆x
(within a given time window) larger than the original pop-
ularity value x of the page, i.e., an event with logarithmic
derivative ∆x/x > 1. The distribution of the time elapsed
between consecutive bursts of the same node has a Poissonian
decay for the ranking model, at variance with our empirical
observations. Therefore, a modification of the model must
be devised. Pending further study, we want our model to be
agnostic to the actual cause of the bursts; in real data, they

1 i j t... i+1 ... ...

1 i-δ j-δ
......

Fig. 7. Illustration of the rank-shift model in an example where
popularity is measured by indegree. New nodes are added at each
timestep, illustrated by the node t; each node’s probability of receiv-
ing a new link is proportional to their rank. In the diagram the node
j is being reranked, pushing down the ranks of i, i+ 1, ....

Given real δ, ρ and ranking function r(),
desired number of nodes N

for t in 0 .. N do
# Growth step

Create new node t
Assign links from t to existing nodes k,

with P (k) ∼ r(k)−δ.
# Reranking step
for each k (r(k) = j), with probability ρ,

choose random i < j and set r(k) = i
for r(`) in i .. j do

set r(`) = r(`) + 1
end

end
end

Fig. 8. Pseudocode for the rank-shift model. In the case of traffic,
instead of assigning links to existing nodes, we simply increment
their traffic counts.

could be caused by external events (such as interest sparked
by news stories) or due to other dynamics of the system (recall
Figure 1). For now, observe that the net effect of such a burst
for the node in question is to change its popularity rank with
respect to the other nodes in the system. Therefore, let us
introduce rank shifting in the model: at each iteration, with a
small probability ρ each node is assigned a new rank, chosen
uniformly between 1 and its current rank, simulating a sudden
increase in the attention paid to the node. (Figure 7). Thus our
rank-shift popularity model has two parameters: δ regulating
the probability of accumulating popularity as a function of
rank, and ρ defining the frequency of rank perturbations for
each page. These sudden improvements of the rank lead to
abrupt variations of popularity, as observed in the empirical
data.

The model works as follows. Each node is assigned an
arbitrary position in an initial ranking. Then two steps are
performed iteratively. First, a new node t is added, and linked
to existing nodes according to their rank; a node with rank r
receives a link with probability p(r) ∼ r−δ . Second, with
probability ρ, each node is reranked, i.e. moved to a new
position toward the front of the list. The new position i is
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Fig. 9. Comparison of the empirical data with the predictions of
the rank-shift model. The model is able to replicate the dynamics
observed.

chosen randomly with uniform distribution between 1 (the
top position) and the node’s current rank j, thus focusing
on positive bursts (see Figure 8 for pseudocode). The node
previously occupying position i is moved back to i + 1,
and so on. Simulations of this model were performed using
the empirical number of nodes N (cf. Table I), and various
values of the parameters ρ and δ. The effect of varying these
parameters is discussed next.

C. Evaluation of Model

For ρ = 0 we recover the original ranking model, and
the distribution of ∆x/x (for instance, the traffic or inde-
gree of nodes) matches that of preferential attachment (cf.
Figure 5(a)). This describes the behavior of the many topics

that do not undergo sudden, large bursts of attention. These
dynamics are reflected in the lognormal portion of the burst
magnitude distributions (cf. Figure 3).

For ρ > 0 numerical simulations show that the tail of the
popularity burst magnitude distribution shifts from a lognormal
to a power law while the popularity distribution remains a
power law; its exponent remains γ = 1 + 1/δ, with an expo-
nential cutoff now depending on ρ. This modification allows
the model to capture the dynamics of topics undergoing large
bursts of attention. This behavior is manifest empirically in the
broad tails of the burst magnitude distributions, which cannot
be explained by preferential attachment alone (cf. Figure 5(a)).

Given the relationship between δ and the exponent γ of the
indegree distribution (discussed above), we chose δ = 1/(γ−
1) using the empirical γ, finding 1 ≤ δ ≤ 1.2 for our data.
We then numerically estimated a value of ρ in order to fit
the distribution of ∆x/x, and found 10−5 ≤ ρ ≤ 10−3. With
these parameters, our simple model is able to reproduce many
of the critical features observed in the empirical data. Not only
does it predict the distributions of both popularity measures
for both data sets (Figure 9(a)), but also the long tail of the
distributions of indegree and traffic burst size (Figure 9(b)).
Further, the model also captures the long-range distribution of
inter-burst intervals (Figure 9(c)). The rank-shift mechanism is
therefore able to capture the way in which Web sites and pages
gain and accumulate popularity: not by a gradual proportional
process, but by a sequence of bursts that move them to the
forefront of people’s attention. This is sufficient to reproduce
the broad distributions in the magnitude of bursts and in their
temporal dynamics.

VI. CONCLUSIONS

This work analyzes popularity growth across systems of
varying scales by using the logarithmic derivative of popularity
proxies. We applied this approach to three large data sets,
revealing non-trivial and consistent popularity dynamics that
they share; namely, that a huge number of attention bursts of
large magnitude, akin to booms in financial markets, occur
daily in the online world. Such wild dynamics of popularity
are not entirely captured by existing rich-get-richer models.
They are also different from those observed in news-driven
events [13], where attention fades rapidly and overall popular-
ity is lognormal-distributed. We further propose a rank-shift
model which outperforms preferential attachment models for
capturing these dynamics.

Further analysis is needed to better characterize the long-
term temporal correlations among bursts of individual pages
and ascertain whether any topic or only certain types of topics
are capable of experiencing large surges of attention even
after being dormant for a long time. Our model focuses only
on the occurrence of large events; with time, it could be
combined with models that seek to replicate other features
of the resulting graph, such as the forest fire model [11].
Though impossible with the English Wikipedia, as the time
ranges for relevant data do not overlap, correlation of indegree
and strength over time might yield interesting results for



those Wikipedia languages for which dumps are still available.
Predictability is emerging as a key question [16]. Future efforts
will also extend the present analysis to other measures of
popularity available in the Wikipedia — number of revisions
and number of unique editors — as well as to other data
sets. The present findings are neutral about what drives the
popularity bursts: it could be search engines, external events,
news, word of mouth, social media, marketing campaigns, or
any combination of them. In a companion paper, we show
that external events are certainly one important factor [18].
Further study correlating traffic from multiple sources, such
as Twitter and news feeds, could shed further empirical light
on this question.
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