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ABSTRACT
Feature subset selection is an important problem in knowl-
edge discovery, not only for the insight gained from deter-
mining relevant modeling variables but also for the improved
understandability, scalability, and possibly, accuracy of the
resulting models. In this paper we consider the problem
of feature selection for unsupervised learning. A number
of heuristic criteria can be used to estimate the quality
of clusters built from a given feature subset. Rather than
combining such criteria, we use ELSA, an evolutionary lo-
cal selection algorithm that maintains a diverse population
of solutions that approximate the Pareto front in a multi-
dimensional objective space. Each evolved solution repre-
sents a feature subset and a number of clusters; a standard
K-means algorithm is applied to form the given number of
clusters based on the selected features. Preliminary results
on both real and synthetic data show promise in �nding
Pareto-optimal solutions through which we can identify the
signi�cant features and the correct number of clusters.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management|
Database Applications[Data Mining]

General Terms
Feature selection, evolutionary search, clustering

1. INTRODUCTION
Feature selection is the process of choosing a subset of the
original predictive variables by eliminating redundant and
uninformative ones. By extracting as much information as
possible from a given data set while using the smallest num-
ber of features, we can save signi�cant computing time and
often build models that generalize better to unseen points.
Further, it is often the case that �nding a predictive subset
of input variables is an important problem in its own right.

We adopt the wrapper model [12] of feature selection which
requires two components: a search algorithm that explores
the combinatorial space of feature subsets, and one or more
criterion functions that evaluate the quality of each subset
based directly on the predictive model. Most feature se-
lection research has focused on heuristic search approaches,
such as sequential search [13], nonlinear optimization [5],
and genetic algorithms (GAs) [17]. A recent review of these
methods can be found in [6]. These methods considered fea-
ture selection in a supervised learning context, evaluating
potential solutions in terms of predictive accuracy. We in-
stead wish to �nd natural grouping of the examples in the
feature space via clustering or unsupervised learning. Clus-
tering may be performed using methods such as K-means
[10], expectation maximization (EM) [9], or optimization
models [4]. We use the standard K-means algorithm with
each solution's selected subset of features. Recent research
has focused on forming clusters in large data sets [3, 1]. We
take the view that an e�ective way to scale a clustering al-
gorithm is to reduce the dimensionality of the data by using
a subset of the points to select a subset of the features.

A number of heuristic criteria, such as cluster compactness
and inter-cluster separation, have been used to estimate the
quality of the clusters, and attempts have been made to
combine these into a single objective [7]. This is a diÆcult
problem to solve in the general case, since each data set has
it's own characteristics and each decision maker has her own
priorities. In such situations we must use multi-objective or
Pareto optimization. Informally, a solution is said to dom-

inate another if it has higher values along all the objective
functions. We de�ne the Pareto front as the set of nondomi-
nated solutions. The goal is to approximate as best possible
the Pareto front, presenting the decision maker with a set
of high-quality compromise solutions from which to choose.

We use evolutionary algorithms (EAs) to intelligently search
the space of possible feature subsets (and values ofK). Stan-
dard EAs assume a single �tness function to be optimized.
A number of multi-objective extensions of evolutionary al-
gorithms have been proposed in recent years [8]. Most of
them, such as the Niched Pareto Genetic Algorithm [11],
employ computationally expensive selection mechanisms to
favor dominating solutions and to maintain diversity. In-
stead, we use a new evolutionary algorithm that maintains
diversity over multiple objectives by employing a local selec-
tion scheme. This Evolutionary Local Selection Algorithm



(ELSA) works well for Pareto optimization problems [16].

In Section 2 we discuss our approach in detail, justifying
our heuristic clustering quality metrics, illustrating the evo-
lutionary algorithm, and describing how ELSA is combined
with K-means. Section 3 presents some experiments with
synthetic and real data sets, and discusses the interpreta-
tion of the ELSA output to select a subset of good features.
Section 4 concludes the paper.

2. FEATURE SELECTION ALGORITHM
2.1 Heuristic metrics for clustering
Most measurements to evaluate cluster quality are based
on geometric distance metrics and are therefore not directly
applicable because they are biased by the dimensionality of
the space, which is variable in feature selection problems.
In our study we use four heuristic �tness criteria, described
below. Two of the criteria are inspired by statistical metrics
and two by Occam's razor [2]. Each objective is normalized
into the unit interval and maximized by the EA.

Fwithin : This objective is meant to favor dense clusters by
measuring cluster cohesiveness. It is inspired by the total
within-cluster sum of squares (TWSS) measure. Formally,
let xi; i = 1; � � � ; n, be data points and xij be the value of
the j-th feature of xi. Let d be the dimension of the selected
feature set, J , and K be the number of clusters. De�ne the
cluster membership variables �ik as follows:

�ik =

�
1 if xi belongs to cluster k
0 otherwise

where k = 1; � � � ; K and i = 1; � � � ; n. The centroid of the
k-th cluster, k, is de�ned by its coordinates:

kj =

Pn

i=1 �ikxijPn

i=1 �ik
; j 2 J:

Fwithin can �nally be computed:

Fwithin = 1�
1

ZW

1

d

KX
k=1

nX
i=1

�ik
X
j2J

(xij � kj)
2

where the normalization by the number of selected features
d compensates for the dependency of the distance metric on
the feature subspace dimensionality. ZW is a normalization
constant meant to achieve Fwithin values spanning the unit
interval. Its value is set empirically for each data set.

Fbetween : This objective is meant to favor well-separated
clusters by measuring their distance from the global cen-
troid. It is inspired by the total between-cluster sum of
squares (TBSS) measure. We compute Fbetween as follows:

Fbetween =
1

ZB

1

d

1

k � 1

KX
k=1

nX
i=1

(1� �ik)
X
j2J

(xij � kj)
2

where, as for Fwithin, we normalize by the dimensionality of
the selected feature subspace and by the empirically derived,
data-dependent constant ZB .

Fclusters :Other things being equal, fewer clusters make the
model more understandable and avoid possible over�tting.

initialize pmax agents, each with energy �=2
while there are alive agents and for T iterations

for each energy source c (1 .. C)
for each v (0 .. 1)

Ec

envt
(v)  2vpmaxEcost=C

endfor

endfor

for each agent a
a0
 mutate(clone(a))

for each energy source c (1 .. C)

v  Fc(a
0)=Pc(Fc(a

0))
�E  min(v; Ec

envt
(v))

Ec

envt
(v)  Ec

envt
(v)��E

Ea  Ea +�E
endfor

Ea  Ea � Ecost
if (Ea > �)

insert a0 into population
E
a0  Ea=2

Ea  Ea � E
a0

else if (Ea < 0)
remove a from population

endif

endfor

endwhile

Figure 1: ELSA pseudo-code. See text for details.

We implement this with the criterion

Fclusters = 1�
K �Kmin

Kmax �Kmin

where Kmax (Kmin) is the maximum (minimum) number of
clusters the user chooses to consider.

Fcomplexity : This objective is aimed at minimizing the
number of selected features:

Fcomplexity = 1�
d� 1

D � 1
;

where D is the dimensionality of the full data set. Again,
we expect that lower complexity will lead to easier inter-
pretability of solutions as well as better generalization.

2.2 Evolutionary local selection algorithm
ELSA springs from algorithms originally motivated by arti�-
cial life models of adaptive agents in ecological environments
[15]. In these models an agent's �tness results from individ-
ual interactions with the environment, which contains other
agents as well as �nite shared resources. A more extensive
discussion of the algorithm and its application to Pareto op-
timization problems can be found elsewhere [16]. Figure 1
outlines the ELSA algorithm.

Each agent (candidate solution) in the population is �rst
initialized with some random solution and an initial reser-
voir of energy. The representation of an agent consists of
D +Kmax � 2 bits. D bits correspond to the selected fea-
tures (1 if a feature is selected, 0 otherwise). The remaining
bits are a unary representation of the number of clusters.1

This representation is motivated by the desire to preserve
the regularity of the number of clusters under the muta-
tion operator. Mutation is the only genetic operator used
to explore the search space these experiments.

1The cases of zero or one cluster are meaningless, therefore
we count the number of clusters as k = �+2 where � is the
number of ones and 2 � k � Kmax.



The environment corresponds to the set of possible values
for each of the criteria being optimized.2 We have an energy
source for each criterion, divided into bins corresponding to
its values. When the environment is replenished, each cri-
terion is allocated an equal share of energy, apportioned in
proportion to the �tness values in order to bias the popula-
tion toward more promising areas in objective space. Note
that the total replenishment energy that enters the system
at each iteration is such that we can maintain a population
size of pmax on average.

In each iteration of the algorithm, an agent explores a can-
didate solution similar to itself; it is rewarded with some en-
ergy from the environment and taxed with a constant cost.
To compute the energy intake of an agent, for each objective
function, the environment scales the agent's �tness value by
the number of agents sharing the corresponding bin. Can-
didate solutions receive energy only inasmuch as the envi-
ronment has suÆcient resources; if these are depleted, no
bene�ts are available until the environment is replenished.
Thus an agent is rewarded with energy for its high objec-
tive values, but also has an interest in �nding unpopulated
niches in objective space, where more energy is available.
The result is a natural bias toward diverse solutions in the
population. In the selection part of the algorithm, an agent
compares its current energy level with a constant reproduc-
tion threshold to decide whether the mutated clone that was
just evaluated should become part of the population. If an
agent runs out of energy, it is killed.

In order to assign energy to a solution based on the �tness
criteria, ELSA must form the given number of clusters based
on the selected features. In the experiments described here,
the clusters to be evaluated are constructed using a stan-
dard K-means algorithm. It iteratively assigns each data
point to the cluster whose centroid is located nearest to the
given point, and recalculates the centroids based on the new
set of assignments, repeating until no points are reassigned.
Each time a new candidate solution is evaluated, the corre-
sponding bit string is parsed to get a feature subset J and
a cluster number K. The K-means algorithm is given the
projection of the data set onto J , uses it to form K clus-
ters, and returns the four �tness criteria Fwithin, Fbetween ,
Fclusters, and Fcomplexity.

3. EVALUATION
It is diÆcult to evaluate the quality of an unsupervised learn-
ing algorithm, and feature selection problems present the
added diÆculties that the clusters depend on the dimen-
sionality of the selected features and that any given feature
subset may have its own clusters, which may well be incom-
patible with those formed from di�erent subsets. There-
fore we take a gradual approach to evaluate the proposed
method. First, we use a small-dimensional synthetic data
set with well-de�ned distributions and clusters along each
feature dimension. This allows us to determine whether the
given solutions formed by ELSA represent a sensible com-
promise between the conicting heuristic quality objectives.
Second, we use a high-dimensional synthetic data set, in
which the distributions of the points and the signi�cant fea-
tures are known, while the appropriate clusters in any given

2Here, C = 4 criteria; continuous objectives are discretized.

feature subspace are not known. We evaluate the evolved
solutions by their ability to discover pre-constructed clusters
in a �ve-dimensional subspace. Finally, we use a real data
set for which we have knowledge about the clusters and the
relevant features. In this case, we can evaluate the solutions
both by examining the selected features and by judging the
semantics of the resulting clusters.

For further comparisons we have implemented a greedy heuris-
tic algorithm known as two-way sequential selection [13].
This algorithm requires a set value of K and uses Fwithin
as the optimization criterion. It begins by �nding the single
dimension along which the objective is optimized. At each
successive step, the algorithm adds an additional feature
that, when combined with the current set, forms the best
clusters. It then checks to see if the least signi�cant feature
in the current set can be eliminated to form a new set with
superior performance. This iteration is continued until all
the features have been added. We repeated the algorithm
for the same values of K considered by ELSA.

3.1 Experiment 1
The �rst synthetic data set has n = 300 points and D = 6
features, and is constructed as follows. One cluster is formed
along feature 1 and two clusters are formed randomly along
feature 2. Along feature 3, we randomly reassign the points
to two independent clusters. We repeat the process for fea-
ture 4. Finally, for features 5 and 6, the points are dis-
tributed uniformly. All the clusters are formed by generat-
ing points from a pseudo-Gaussian distribution with stan-
dard deviation � � 0:06. Figure 2 illustrates this data set
by projecting the points onto some of the feature subspaces
with d = 2. The motivation for this data set is to have an
understanding of the relationships between the di�erent fea-
tures, and at the same time a realistic mixture of signi�cant,
less signi�cant, and insigni�cant features.
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Figure 2: Some 2-dimensional projections of the
data set of Experiment 1.

The individuals are represented by strings with 12 bits, 6
for the features and 6 for K, so that Kmax = 8. There are
7 energy bins for Fclusters, 6 for Fcomplexity, and 10 each
for Fwithin and Fbetween . The values for the various ELSA
parameters are: Pr(mutation) = 0.1 (per bit), pmax = 100,
Ecost = 0.2, � = 0.3, and T = 40,000.

The best solution with four clusters in more than one dimen-



sion included features 2 and 3. The best solution with K =
2 and more than one dimension included features 1 and 4.
As depicted in Figure 2, both of these solutions describe the
data very well. The �nal population was dominated by solu-
tions with one feature, which typically look extremely good
along two criteria: complexity, and either Fwithin (many
centers inside one true cluster) or Fbetween (well-separated
centers along a random dimension).

As expected, the greedy search method performed very well
on this simple data set. With K = 2, features were added
in the order 1, 3, 2, 4, 5, 6; with K = 4, the order was 1, 3,
4, 2, 5, 6. As it happens, the two-dimensional clusters along
features 1 and 3 are somewhat better (in terms of Fwithin)
than those along features 1 and 2.

3.2 Experiment 2
With the second data set we pose a problem with higher di-
mensionality, retaining the realistic avor of the smaller data
set. We again have some \signi�cant" features (in which
points belong to correlated normal clusters), some \Gaus-
sian noise" features (in which values are drawn from single or
bimodal normal distributions along each dimension, but the
distributions along di�erent features are uncorrelated), and
some \white noise" features (in which points are drawn from
uniform distributions). The data set has n = 500 points and
D = 30 features. It is constructed so that the �rst 10 fea-
tures are signi�cant, with 5 \true" clusters consistent across
these features. The next 10 features are Gaussian noise,
with points randomly and independently assigned to 2 nor-
mal clusters along each of these dimensions. The remaining
10 features are white noise. The standard deviation of the
normal distributions is � � 0:06 and the means are them-
selves drawn from uniform distributions in the unit interval,
so that the clusters may overlap.

Individuals are represented by 38 bits, 30 for the features
and 8 for K (Kmax = 10). There are 9 bins for Fclusters and
10 each for Fcomplexity, Fwithin, and Fbetween. The parame-
ters for ELSA are the same as those used in Experiment 1,
except that T = 800,000 iterations.

ELSA Greedy
K
d

2 3 4 5 6 2 3 4 5 6

2 { 68 71 24 { 56 40 29 24 24
3 { 62 74 62 { 57 39 29 25 51
4 { 40 34 44 { 58 40 31 43 76
5 { { 53 61 38 57 38 76 70 80
6 { { { 35 { 100 67 99 80 100

Table 1: Classi�cation performance (%) of various
solutions found by ELSA and by greedy search. The
\{" entries indicate that no solution with those pa-
rameters existed in the �nal ELSA population.

Table 1 shows the classi�cation accuracy of various models
formed by both ELSA and the greedy feature search. We
compute accuracy by assigning a class label to each clus-
ter based on the majority class of the points contained in
the cluster, and then computing correctness on only those
classes, e.g., models with only two clusters are graded on
their ability to �nd two classes. ELSA results represent in-

dividuals from the �nal population. ELSA consistently out-
performs the greedy search on models with few features, ex-
actly the sort of models the algorithm was designed to �nd.
For more complex models, the greedy method is better able
to reconstruct the original classes. This is reasonable, since
ELSA does not concentrate on this part of the search space.

3.3 Experiment 3
In addition to the arti�cial data sets discussed above, we
also test our algorithm on a real data set, the Wisconsin
Prognostic Breast Cancer (WPBC) data [14]. This data set
records 30 numeric features quantifying the nuclear grade of
breast cancer patients at the University of Wisconsin Hos-
pital, along with traditional prognostic variables tumor size
and number of positive lymph nodes, and a binary variable
indicating whether lymph status was recorded. This results
in a total of 33 features for each of 227 cases.

Individuals are represented by 37 bits, 33 for the features
and 4 for K (Kmax = 6), therefore there are 5 bins for
Fclusters. Other ELSA parameters are the same as those
used in Experiment 1 except that T = 10,000.

We analyze performance on this data set by looking for clin-
ical relevance in the resulting clusters. We chose a solution
with three clusters in 7 dimensions by picking the best in-
dividual (in terms of Fbetween and Fwithin) with 3 clusters
from the �nal population. We used the actual outcomes
(time to recurrence, or known disease-free time) of the cases
in each cluster to form the Kaplan-Meier maximum likeli-
hood estimate of the true disease-free survival curve. The
three groups displayed well-separated survival characteris-
tics. Ten-year recurrence rates were 17.8%, 26.9%, and
45.6% for the patients in the three groups. Because of
its small size (22 cases, 3 recurrences), the best prognostic
group was not statistically signi�cantly di�erent from the
intermediate group (p = .075). The intermediate group was
well-di�erentiated from the poor group (p < 0.01).

The chosen dimensions included a mix of nuclear morpho-
metric features such as symmetry, concavity and texture,
along with lymph status and tumor size. We note that the
inclusion of lymph status requires dissection of the ancil-
lary nodes for staging purposes, leaving the patient at risk
for painful complications. While we would prefer to make
treatment decisions without this feature, the clustering re-
sults consistently indicated that it was relevant to the form-
ing of prognostic groups.

4. CONCLUSIONS
We presented a novel approach for large-scale feature selec-
tion problems using unsupervised learning. ELSA, an evo-
lutionary local selection algorithm, was used successfully in
previous work in conjunction with supervised learning [16].
In this paper we used ELSA to search for possible combina-
tion of features and numbers of clusters, with the guidance
of the K-means algorithm. While the search biases of ELSA
and K-means may not be ideal for this application (a topic
to be explored in future work), the combination of a multi-
objective search algorithm with unsupervised learning pro-
vides a promising framework for feature selection. We sum-
marize our �ndings as follows. i) ELSA covers a large space
of possible feature combinations well while simultaneously



optimizing the multiple criteria. ii) The standard K-means
algorithm can be used to guide ELSA by evaluating the
quality of a subset of features. iii) A number of possibly
conicting heuristic metrics can be plugged into the algo-
rithm, while remaining agnostic about their relative worth
or their relationships. iv) Most importantly, in the proposed
framework we can select signi�cant feature subsets without
training examples, while at the same time identifying the
inherent numbers of clusters.

In future work we will further analyze the interactions among
our various optimization criteria. For instance, increasing
the number of features dramatically a�ects both of our clus-
ter quality metrics. We corrected for much of this with nor-
malization terms, but further study is needed to decorrelate
the e�ects of the various criteria. Further, well-separated
but nearby clusters are judged harshly by the traditional
TBSS measure on which Fbetween is based. We will explore
other objectives that implement the idea of forming well-
separated clusters. Interactions among di�erent features can
also be studied in ELSA, by employing genetic operators
such as crossover.

It would often be desirable to identify one single solution
from the estimated Pareto front representing a \best com-
promise." Once the algorithm has identi�ed a set of can-
didate solutions we might be able to apply some more ex-
pensive statistical or geometric method. For example, we
might look along the approximate Pareto front for a point
of maximal curvature.

From a knowledge discovery perspective, our algorithm of-
fers several advantages. Certainly the simplicity bias of Oc-
cam's Razor is a well-established means for improving gener-
alization on real-world data sets. Further, it is often the case
that the user can gain insight into the problem domain by
�nding the set of relevant features; consider such problems
as prognostic factors in breast cancer, target marketing, or
genetic analysis. Finally, a key problem in data mining is the
scaling of predictive methods to large data sets. Our algo-
rithm can easily be used as a preprocessing step to determine
an appropriate set of features (and number of clusters), al-
lowing the application of iterative algorithms like K-means
on much larger problems.
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