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ABSTRACT
The IntelliShopper is a shopping assistant designed to em-
power consumers. It is a personal assistant in that it ob-
serves the users while shopping and learns their preferences
with respect to various features that characterize shopping
items. It is proactive in that it remembers the users’ requests
and autonomously monitors vendor sites for new items that
might match the users’ needs and preferences. Finally, it
protects users’ privacy by means of pseudonymity, IP anony-
mizing, and trusted filtering. Pseudonymity is achieved
through the use of personae; we show that this approach
also behooves successful classification. IP anonymizing can
be performed in at least two manners, which we discuss and
compare in the context of our application. Trusted filtering
— as opposed to merchant-based filtering — improves pri-
vacy by allowing users to select their preferred privacy repre-
sentative. This paper introduces the IntelliShopper system,
discusses its architecture and components, describes a proto-
type implementation, and outlines preliminary evaluations
of its performance.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce;
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Intelligent agents, Multiagent systems; H.3.4 [In-
formation Storage and Retrieval]: Systems and Soft-
ware—User profiles and alert services; H.3.3 [Information
Storage and Retrieval]: Information Search and Retriev-
al—Information filtering, Relevance feedback ; E.3 [Data En-
cryption]: Public key cryptosystems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

Keywords
Shopping, Pro-activity, Monitoring, Personalization, Learn-
ing, Privacy

1. INTRODUCTION
E-commerce has changed the way companies distribute

their products and services to consumers. Traditional brick-
and-mortar companies continue growing this segment of the
economy by creating their own e-commerce presence. Some
companies have created (or reshaped) their image by having
their entire operations based strictly on e-commerce. An
e-commerce strategy has many benefits for the company as
well as the consumer. In the research presented here, we aim
at improving the accessibility and expanding the benefits of
e-commerce shopping to consumers and at aiding the move
to a personalized (and thus more efficient) marketplace.

The success of e-commerce has resulted in problems anal-
ogous to those earlier created by the growth and popularity
of the Internet. Search engines were an early solution to the
problem of finding information spread out over many differ-
ent Web sites. Similarly now, a shopper must sift through
the information provided by innumerable e-commerce sites.
This task is a difficult one as the type, amount, and orga-
nization of the information provided on e-commerce sites
differs from company to company. Complicating matters,
a customer goes unaware of changes in pricing, availability,
etc. unless she revisits the sites very frequently.

There are a number of things that shoppers can currently
do when looking for a product. The most straightforward
approach is to manually visit various e-commerce sites; for
each site, the shopper browses and/or searches for the partic-
ular product of interest. This simple approach has several
drawbacks. First, there is no single site that caters to all
shopping needs, which increases the (user) search time for
each new product category. Also, getting acquainted to new
vendor interfaces slows down the user browsing and hinders
impulse shopping. Finally, it is an approach likely to favor
only the largest vendors (due to name-branding), which in
turn reduces the effectiveness of the market.



A second approach increases the degree of automatization
by site-provided alert services. Several services allow shop-
pers to sign up to receive price alerts that notify a shopper
when the price of a product changes or falls below a spec-
ified amount. Some of the services require lengthy surveys
to be filled out, while at the same time most provide little
to no personalization. A further drawback of this approach
is the weakening of user privacy that it implies.

A third proposed approach involves voluntary ratings and
reviews of vendors and products by users, and the compila-
tion of such information [9]. As in the previous approach,
such recommendation systems are likely to reduce the size
of the marketplace and to introduce bias, as it is difficult
to obtain a sufficient number of ratings for every existing
vendor, and to control the reliability of the sources.

Finally, a fourth general approach is to further automate
and generalize the search process [11, 7]. As early as 1995,
shopping agents (also referred to as comparison shopping
agents) were proposed as a solution to find a product under
the best terms (where price was the most important fea-
ture early on) among different e-commerce sites. A shop-
ping agent queries multiple sites on behalf of a shopper
to gather pricing and other information on products and
services. Most of these comparison shopping agents how-
ever present a marketplace that is biased in favor of the
e-commerce sites that collaborate with the shopping agent.
In addition to the biased marketplace, a shopper has only
a limited number of e-commerce sites to choose from and
often the participating sites do not offer the best prices.

We propose a new type of shopping agent, called Intel-
liShopper, that extends the above approaches by providing
the user with autonomy, personalization, and privacy.

Autonomy refers to the idea that a shopping agent can
provide the best possible service by remaining as indepen-
dent as possible from both customers and vendors. Au-
tonomy from vendors implies that the service is to remain
unbiased by performing wide searches (as opposed to only
searching the databases of a few “preferred” vendors). This
can be achieved by progress in making interfaces more uni-
form, and by improved methods for interpreting potential
hits. Autonomy from the customer means that users can be
relieved from the tedious task of searching for information
and of needing to adjust to different e-commerce sites. Fur-
thermore, our shopping agent proactively monitors vendor
sites on behalf of the user, notifying him of new products of
potential interest.

Personalization means that the shopping assistant strives
to learn the user behaviors and preferences by observing his
actions while shopping. When a user considers the items
available at e-commerce sites, he indirectly provides feed-
back by clicking on items. The agent can internalize this
feedback to infer user preferences and apply such learned
knowledge in taking initiative about future searches, as well
as in predicting when a user might be interested in an item,
so that the user can be notified.

Finally, our research addresses the privacy of the shopper
by concealing the identity and behavior of the user in a va-
riety of ways. However, we note that the privacy provided
is conditional, and should be selectively revoked if abuse is
suspected. The personalization and privacy aspects of our
proposed agent provide for an unbiased personalized mar-
ketplace where the user benefits in many respects.

2. BACKGROUND
Research in the area of shopping agents dates back to the

early years of the Web. In 1995, Andersen Consulting devel-
oped BargainFinder, the first of the shopping agents. It al-
lowed users to compare prices of music CDs from stores sell-
ing over the Internet. At the time however, some of the re-
tailers blocked access because they did not want to compete
on price, and BargainFinder ceased operation. Since then,
there have been additional shopping agents that started pro-
viding unbiased comparison of products from different shop-
ping sites. In PersonaLogic, users created preference profiles
to describe their tastes. The approach allowed for the iden-
tification of products with features important to the users,
but the vendors had to provide an interface that explicitly
disclosed the features of the products in a way that could
be matched with user profiles. PersonaLogic was acquired
by AOL in 1998 and the technology disappeared.

Ringo was an agent that recommended entertainment prod-
ucts (music, movies) based on collaborative filtering, i.e., on
opinions of like-minded users [3]. This was one of the earli-
est software agent technologies to be commercialized, when
it was incorporated into a company named FireFly. FireFly
also addressed the issue of privacy by initiating and promot-
ing the P3P standard. FireFly was acquired by Microsoft in
1998 and the FireFly agent ceased operation shortly there-
after. However the concept of collaborative filtering has be-
come widely used, including — in simplified ways — by large
commercial vendors such as Amazon.

The ShopBot was an agent that could learn how to sub-
mit queries to e-commerce sites and interpret the resulting
hits to identify lowest-priced items [4]. ShopBot automated
the process of building “wrappers” to parse semistructured
(HTML) documents and extract features such as product de-
scriptions and prices. Our goals are similar but we focus on
learning the user preferences (with respect to many features)
and we use a different approach for extracting those features
from vendor sites. The ShopBot technology had a similar
fate to those of PersonaLogic and FireFly; it was acquired
and commercialized by Excite (under the name Jango), and
soon replaced with a biased vendor-driven agent.

Tete@Tete was an agent that integrated product broker-
ing, merchant brokering, and negotiation [15]. A start-
up called Frictionless Commerce is applying the technology
to B2B markets (e-sourcing) rather than to B2C markets.
The only comparison shopping agents available to consumers
that are surviving in the commercial realm are biased, pre-
senting results only from companies with whom they collab-
orate. Examples include MySimon, DealTime, PriceScan,
RoboShopper, and many others.

Learning user behaviors and preferences by “looking over
the user’s shoulders” is an example of an interface agent.
These have been widely employed in information filtering
and Internet recommendation systems [14]. Two user inter-
face agents that learned from the actions taken by a user
are Letizia [12] and WebWatcher [10]. Similarly to these
agents, IntelliShopper presents information to the user in
a way that allows her interaction to be easily incorporated
into the learning process.

In the area of Web querying and monitoring, the most
relevant work is WebCQ [13]. In WebCQ, specific pages can
be monitored for changes to their content. The system can
track changes on arbitrary pages by computing the differ-
ence between the page at some given time and the same



page at a later time. More recently research has begun on
the monitoring of XML data [17]. Here, the structuring
of documents allows for database-precision queries. In this
particular work, the focus is on the architecture of a scalable
system that supports the monitoring of millions of pages per
day serving millions of subscribers to the monitoring service.

A variety of well-known cryptographic techniques are ap-
plicable to preserve the privacy of online shoppers. To pro-
tect the identity of users, a type of pseudonym called a
persona can be used (see [1] for a discussion of the type
and degree of privacy obtained with this technique). An
anonymizer1 (a.k.a. mix network or onion router) can be
used to obtain communication privacy, i.e., to hide the IP
address from which requests emanate and to which responses
are directed. An anonymizer consists of one or more servers
located between the user and the merchants; these servers
forward requests and responses, and anonymize by means of
permutation, stripping of IP addresses, and encryption/de-
cryption. We refer to [9] for a detailed description of how to
integrate these tools in an architecture such as ours.

An alternative to anonymizers is the “Crowds” approach,
which can be thought of as a “buyers club” for privacy [18].
In practice, this is implemented by one or more users passing
each other’s requests back and forth to hide their origin
from a recipient/merchant. Such an approach is slightly
less palpable than anonymizers in an architecture like the
one proposed in this paper, but is still possible to use.

An alternative to hiding the identity and the whereabouts
(IP address) of the users is to hide what they request. In
particular, it is possible to design a system in which users
can access elements of a database in a manner that makes
it impossible to determine what elements were accessed [6].
However, such an approach (naturally) prohibits the central
collection of statistics, forcing all the filtering to be per-
formed by the user. Furthermore, this approach makes user
mobility difficult and collaborative filtering impossible. We
therefore do not consider techniques of this type.

3. SYSTEM ARCHITECTURE
Figure 1 illustrates the high-level architecture of the Intel-

liShopper system. The privacy agent allows the user to take
on a shopping persona and hides all identifying information
about the user (e.g., IP address, username, and email) from
the rest of the system. The privacy agent resides on one or
more collaborating servers, located between the user and the
IntelliShopper server. It is possible for several privacy agents
to co-exist, allowing each user to select the one in which he
has the most confidence. It is also possible for the user to
employ different privacy agents for different functions, per-
sonae or requests. This selection can be made locally, on the
user’s client, or by a first privacy agent server whose main
function is to keep and maintain the selection policies.

In this model it is assumed that the customer will not
conduct purchasing transactions via the IntelliShopper; if
the user’s privacy is to be protected throughout the buy-
ing process as well as while shopping, then a privacy agent
(acceptable to the merchants) would have to reside between
the user (or the user’s purchasing agent) and the merchants.
We do not further discuss this issue in the present paper.

A shopping persona is a unique identity reflecting the

1See www.anonymizer.com for a commercially proposed
anonymizer.
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Figure 1: Architecture of the IntelliShopper system.
Light gray arrows represent Web interactions based
on the HTTP protocol. Dark gray arrows represent
SQL-based interactions.

mode of use of a particular user. Its public descriptors are in-
dependent of the owner’s identity, location, etc. The persona
becomes the “public user” seen by the other components of
the system, and could even be disclosed to merchants with-
out compromising the user’s identity. The IntelliShopper
can build its history-based preference databases indexed by
the persona descriptors, rather than by user names, IP ad-
dresses, or by using cookies as is currently done by commer-
cial notification and brokering systems. The persona has
two explicit purposes: (i) the privacy of the user is guaran-
teed, assuming the user trusts the anonymizing server, be-
cause no identifying personal information about the user is
ever stored in the IntelliShopper database; and (ii) the user
can take different personae for different shopping needs, e.g.,
“gadget geek” vs. “loving spouse,” and IntelliShopper can
learn a different shopping profile for each persona.

The remaining modules of the system are hosted on the
main IntelliShopper server. They interact with users only
via shopping personae. The learning agent takes user re-
quests, saves them on the database, forwards them to online
vendors, retrieves the resulting hits from the local database,
and displays the results (ranked according to the persona
profile) back to the user. The learning agent also observes
the actions of the user — removing, viewing, and/or buying
items — and adjusts the profile accordingly.

Logic about individual Web-based e-commerce and auc-
tion sites is stored in the vendor modules. These specify how
to query vendors and how to interpret the results and ex-
tract structured information, such as product descriptions
and prices, from the HTML pages returned by the vendor
sites. The hits returned by the vendors are parsed, recorded
in the database, and made available to the learning agent.

The monitor agent periodically queries the database to
retrieve outstanding queries, i.e., shopping requests in which
the user is still interested. At intervals specified by the user,
the monitor agent queries vendors (via the vendor modules)
to see if new items have appeared that might match the
persona profile. The new hits are recorded in the database
so that the user can be notified.

The following subsections illustrate the models behind the
learning, monitor, and privacy agents in greater detail. Im-
plementation issues are discussed in Section 4.

3.1 Learning Agent
IntelliShopper adapts to user preferences to better rank

hits with continued use. Our approach is based on gath-



Feature  low   avg   high
Price    3.25  1.25  2:75
Bids     ...   ...   ...
Time     ...   ...   ...
...

Feature  low   avg   high
Price    3.25  1.00  3.00
Bids     ...   ...   ...
Time     ...   ...   ...
...

Before user click After user click

Lavazza Oro 500g vacuum-packed    $ 9.05   4 bids  2 days  Buy|Remove

Illy Caffe' - imported from Italy       $19.95  9 bids  5 min    Buy|Remove

Folgers American Coffee                 $ 6.50   6 bids  8 hrs     Buy|Remove

...

Figure 2: Illustration of how the learning agent
changes a profile following a user action. In this
case, focusing on the price feature, the user clicks
on the second hit, from which the learning agent in-
fers a mild interest for high-priced items and a mild
disinterest for average-priced items (since the first
hit was skipped over). The temperatures of the cor-
responding price ranges are updated accordingly.

ering the maximum amount of information while requiring
a minimum of extra feedback from the user. The system
learns to increase the rankings of hits that are similar to
those that have interested the user in the past, and reduce
the rankings of those similar to items that the user has ei-
ther ignored or actively disliked. The process is illustrated
in Figure 2.

As is typical in inductive machine learning, our adaptation
scheme is based on a collection of features extracted from the
hits. Features are chosen such that they might be relevant
to the user’s evaluation of the item. Features can be either
continuous or discrete, although all features currently used
are continuous. Considering auction sites for example, the
following features are used in the current model:

• price of the item,

• number of bids that have been placed on the item,

• time remaining in the auction, and

• similarity between the query and the item description.
This is computed using the standard cosine similarity:

sim(q, d) =

∑
k∈q∩d fkqfkd√(∑

k∈d f
2
kd

) (∑
k∈q f

2
kq

)
where q is the query, d is the item description, and fki
is the frequency of term k in i.

For each feature x, we maintain a distribution of tempera-
tures across the range of possible values. The temperature of
a given feature/value pair should correspond with the user’s
desire for an item with that characteristic; high temperature
signifies a desirable value, low temperature an undesirable
one. Temperatures are maintained for each possible value
of discrete features, e.g., a“color” feature might have a low
temperature for the value “pink.” Continuous variables are
discretized, e.g., the “price” feature could have a high tem-
perature for the value “low.” Cutpoints for the discretiza-
tion are based on the mean µ and standard deviation σ of
feature values observed among hits, as follows:

• Very low: x < µ− 2σ

• Low: µ− 2σ ≤ x < µ− σ
2

• Average: µ− σ
2
≤ x < µ+ σ

2

• High: µ+ σ
2
≤ x < µ+ 2σ

• Very high: µ+ 2σ ≤ x

Note that Figure 2 denotes only three possible values for
discretized continuous features.

Temperatures are updated on any user action (or inaction)
related to a given hit. In Figure 2, the user clicks on the
second item, which is high-priced. This causes a rise in
the temperature for high price, i.e., the system considers
this evidence that the user is interested in expensive coffee.
The temperature associated with each feature value follows
a simple update rule:

T (t+ 1) = α1T (t) + α2∆T (1)

where α1, α2 determine how quickly a profile forgets old pref-
erences and tracks new ones.2 There are four possible reac-
tions to any given hit, each with its own effect on ∆T for
the corresponding feature values:

• Buy: Clicking on the “Buy” option is considered strong
positive feedback; it results in a temperature increase
∆T = +0.5 for all the feature values of that item.

• Browse: Clicking on the item description is weak posi-
tive feedback; the temperature increase is ∆T = +0.25.

• Ignore: If a user bypasses an item, as indicated by
clicking on one farther down the list of hits, this is
considered weak negative feedback: ∆T = −0.25. The
Lavazza Oro item in Figure 2 is one such example.

• Remove: Actively deleting an item is strong negative
feedback: ∆T = −0.5.

Hits that appear on the list below the last one with which
the user interacted do not cause any temperature updates.

Hits are given a temperature based on a simple sum of
the temperatures for the values of their features. The hits
are then ranked according to their temperatures, from high
to low. User interactions during a query session cause a
re-ranking of the hits based on updated temperatures.

3.2 Monitor Agent
The monitor agent makes the IntelliShopper autonomous

in that it proactively shops on behalf of users (or, more ac-
curately, on behalf of personae). This agent is a background
process that wakes up periodically and queries the databases
for any requests not yet expired or removed by the users.

The user can specify the duration and frequency of shop-
ping requests. For any outstanding request, the agent checks
the frequency at which the user has requested to monitor
vendors. If the time elapsed since the last check is longer
than the one corresponding to the monitoring frequency, the
agent queries the vendors again and updates the database
with the new hits. New hits might include previously seen
items whose characteristic feature values (say, price) have
changed. The user (possibly notified via email) will find the

2We set α1 = α2 = 1 in the current prototype.



new results waiting the next time she logs into the IntelliSh-
opper. The results will be ranked based on the profile of
the shopping persona used to make the request. As the user
looks at the new hits, the learning agent can get additional
feedback and further adjust the persona profile.

3.3 Privacy Agent
A multitude of approaches must be taken to implement

privacy in our system. Privacy could mean either infor-
mation about who is performing a search, or what is be-
ing searched for. In order to uncouple the request from
the requester, it is necessary to hide both his identity and
whereabouts. (We do not consider the issue of hiding the
geographical location of the user.)

The whereabout of the user — most typically the IP ad-
dress — is best hidden by passing all requests through an
anonymizer, which hides the origin of the request from the
IntelliShopper agent, and the contents of the request from
the anonymizer’s servers.

Anonymizers are typically implemented via distributed
control. The request may be a multiply encrypted message.
For each anonymizer server, this gets partially decrypted,
and passed along to the next server, accompanied by a set
of other such requests. Each server takes a list of inputs
and permutes and operates on these using decryption, re-
encryption, or similar cryptographic operations [2, 8]. After
the last such server has operated on the list, the correspond-
ing outputs are forwarded to the IntelliShopper server. The
latter replies by passing a message back to the user, employ-
ing some user-created temporary alias to address the reply
as it is passed back through the privacy agent.

The privacy of anonymizers rely on at least one of the
servers performing this task correctly, and without revealing
its secret decryption and permutation information. In fact,
for the sake of efficiency, we will use only one anonymizing
server, as was performed in early re-mailers and in at least
one commercially tested Web access anonymizing system [5].
The one-server anonymizer is a degenerate case in which the
server itself is the privacy agent. This server must be trusted
by the users; it should not have any commercial relation
to merchants and other parties wishing to determine the
identity of shoppers.

Most anonymizers require servers to have knowledge of
some secret key for decryption corresponding to the pub-
lic key used to encrypt the request [2, 19]; others require
knowledge of the public key alone [8, 16]. This makes the
latter type useful for ad-hoc anonymizers, where keys are not
pre-assigned to servers and anybody may act as a server.

Users may use different pseudonyms or personae in order
to hide their identity from the agent (and other parties).
Here, we let a persona refer to a pseudonym that a user
employs for a particular type of activity that she wishes to
separate (de-correlate) from other activities. However, using
the case of social security numbers as supporting evidence, it
is clear that if a particular pseudonym or persona is used for
a long time, then this becomes part of the user identity. In
fact, the possibility to link a pseudonym to the real identity
only once (with some reasonable probability) is sufficient
in order for the association to remain. Therefore, it is im-
portant for users to migrate between pseudonyms over time,
where the migration frequency depends on the degree of pri-
vacy desired. Note, however, that the precision of the search
depends on the use of (somewhat continuous) user naming.

In order to balance these requirements against each other,
users may obtain descriptors that label their search behav-
ior, allowing them to submit these along with new personae.
Note that the descriptors must not be detailed enough to al-
low strong “cross-pseudonym” correlations. Note also that
such pseudonym updates should be performed in large num-
bers at the same time, and preferably by a large fraction of
the user population each time. We refer to [1] for a discus-
sion of how to establish and manage personae.

4. INTELLISHOPPER PROTOTYPE
A partial prototype of the IntelliShopper has been im-

plemented to test the ideas discussed above.3 The current
system resides on a single server and does not yet include the
privacy agent, which will be deployed on a different server.
Therefore in the current prototype each user has a single
shopping persona. Although privacy protection is not cur-
rently supported in the current prototype, we note that this
is built according to the architecture required to later add
the privacy protection mechanisms. Email notification is
also not yet implemented in our prototype.

In the development and deployment of the prototype we
have used free open source tools exclusively. The prototype
is implemented in Perl, using LWP and DBI modules for its
Web and database interfaces, respectively. The database is
implemented using MySQL. The IntelliShopper is deployed
on a Darwin-based PowerMac with an Apache HTTP server.

4.1 User Interface
Figure 3 shows some screenshots of the IntelliShopper user

interface, illustrating how a user interacts with the system.
When a user logs in, IntelliShopper displays the profile in-
ferred by the learning agent based on the previous shopping
activity of the current persona (user). The history of the
shopper is also displayed, with live links to outstanding re-
quests and a flag for queries for which the monitor agent has
found new hits. The user can click to examine new or old
hits, or remove requests he no longer wants to monitor.

Alternatively, the user can submit a new shopping request
via the query interface. Here the user can specify a query
string (to be forwarded to vendors) and the type of request,
i.e., whether the user is interested in shopping at online
stores or auctions sites. Each of these options corresponds
to a set of vendor modules. In the future users will also
be able to update their profile, including preferences among
vendors. Furthermore, the user can specify for how long,
and how frequently, the monitor agent should look out for
new available items matching the query.

Once the results have been received from the various ven-
dors, collated, parsed and stored in the database, the learn-
ing agent presents them to the user, ranked according to the
persona (user) profile. As Figure 3 demonstrates, vendors
have different formats for the displayed features. For exam-
ple one auction sites might report the absence of bids as “0”
and another as “–”. Many different formats are also used to
display the time remaining in an auction, even by a single
vendor. An auction site might display “at 6:30PM” at one
time and “in 10 minutes” at a later time, for the same item.
All these formats are converted to common data domains
before the value of each feature is stored in the database.

3The prototype can be accessed on the Web at
myspiders.biz.uiowa.edu/~nvish/IntelliShopper



Figure 3: Top: The information displayed by In-
telliShopper upon login. Middle: Query interface.
Bottom: Results of a search.

4.2 Vendor Modules
The vendor modules allow IntelliShopper to interface with

the various online store/auction sites. There are two aspects
to a vendor logic from the IntelliShopper’s perspective: (i)
submitting queries, and (ii) parsing results. Task (i) is sim-
pler; it consists of identifying an appropriate form, submis-
sion protocol, and input syntax on each vendor site. Task
(ii) is more difficult; it consists of identifying items and ex-
tracting feature values for all desired features (e.g., product
description, price, etc.). While vendors could readily sim-
plify this task, say by using XML-based output, the oppo-
site trend seems to be taking place; many vendors are not
interested in competing on price alone, and therefore use
complex and changing HTML markup to make it difficult
for shopping bots to extract information from their sites.

There is much active research in the development of in-
telligent wrappers that could automate the above tasks. In
fact, there is a sort of arms race between the intelligent

<search
name="eBay"
action="http://search.ebay.com/search/search.dll"
method="GET"

>
<input name="query" user />
<input name="maxRecordsReturned" value="50" />
<interpret
item=’<table width="100%"(.*?)</table>’
key=’<a href="http://cgi.ebay.com/.*?&item=(\d+?)">’
url=’<a href="(http://cgi.ebay.com/.*?&item=\d+)">’
dsc=’<a href="http://cgi.ebay.*?&item=\d+">(.*?)</a>’
price=’<font size=3><b>(.*?)</b></font>’
bids=’width="6%"><font size=3>(.*?)</font>’
time=’width="16%"><font size=3>(.*?)</font>’

/>
</search>

Figure 4: Simplified example of a vendor module.
The module has logic to submit queries to a vendor
site and to interpret the results.

wrappers employed by shopping bots and the growing com-
plexity of HTML interfaces. Early shopping agents such
as the ShopBot [4] demonstrated the interesting learning
challenges stemming from this competition. However the
IntelliShopper described here does not focus on this goal,
therefore we followed a different route in our implementa-
tion. Rather than trying to build automatic wrappers, we
simplified the task of hand-coding wrappers by designing
a language for the specification of vendor-dependent logic.
This way new vendor modules can be written in minutes.

A full description of IntelliShopper’s vendor description
language is outside the scope of this paper, however Fig-
ure 4 illustrates the idea with an example. The language
is based on XML and is inspired by the plug-ins employed
in Apple’s Sherlock meta-search engine. A module contains
two parts: querying and parsing. For querying, there are
tags with fields specifying the URL of the form, the sub-
mission protocol (GET/POST), and the various necessary
input parameters. For parsing, there is a tag with fields
specifying field names and Perl regular expressions that ex-
tract the corresponding feature values. This flexible repre-
sentation permits easy updates for vendor sites that are not
particularly hostile to shopping agents.

All that is needed to allow IntelliShopper to integrate a
new vendor is to drop its vendor module into the appropri-
ate directory. The current prototype has modules for eBay,
Yahoo, and Amazon auctions. It should be noted that while
the use of regular expressions makes it easy to modify wrap-
pers as necessary, it also yields wrappers that are not very
robust in the face of changing vendor site design.

4.3 Database Design
IntelliShopper must store much data about its shopper

personae, their profiles, queries, product hits, and their fea-
tures. The prototype stores all this information in a rela-
tional database. Figure 5 is an entity-relationship diagram
outlining the IntelliShopper database design.

The diagram is quite self-explanatory. The preferences

table stores the profile of each persona; for each feature (e.g.,
price) the learning agent assigns a temperature to each of
the value ranges taken by the feature, based on user feed-
back (cf. Section 3.1). For each hit in the item table, the
feature table stores the value of each feature and the corre-
sponding range. The learning agent uses this range to look
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Figure 5: Data model of the database supporting the
IntelliShopper. Single-line connections to entities
represent relationships of cardinality 1, and trident
connections represent cardinality N.

up the corresponding temperature in the preference table,
for the persona who submitted the query that yielded this
hit. The resulting temperatures for all feature values of an
item are then combined to compute the item temperature
and ultimately rank the hits.

5. EVALUATION
Evaluation of an agent like IntelliShopper is difficult be-

cause measures of success and/or performance are subjec-
tive. Ideally one should compare user satisfaction between
shoppers using IntelliShopper and shoppers using other shop-
ping agents. This is problematic for a number of obvious
reasons, therefore we have focused on the performance of
the learning agent.

The goal is an evaluation measure that is both quanti-
tative and objective, while based on data from real users.
We thus recruited 51 distinct volunteer subjects who used
IntelliShopper during actual shopping sessions. The sub-
jects were asked to sit through two or more sessions over
the weekend of 27-28 October 2001, shopping for any num-
ber of items of their choice. The subjects submitted a total
of 97 distinct queries (1.9 queries per user on average) and
sat through a total of 127 shopping sessions (2.5 sessions
per user on average). The entire experiment involved a to-
tal of 3,425 distinct hits, or 27 hits per session on average
(at most 10 hits per query were retrieved from each of the
three auction sites).

During each shopping session a subject could submit re-
quests, look at new hits for previous requests, and provide
indirect feedback to the learning agent through the IntelliSh-
opper user interface. All the user requests, hits and feedback
were recorded along with two rankings of all the hits in each
session. The first ranking was the one used by the system to
display hits, based on the learned user profiles. The second
ranking was computed based on the feedback inferred from
user actions during each session. For the hit set correspond-
ing to each (user, session, query) tuple, we measured
the Spearman’s rank correlation coefficient between these
two rankings:

ρ = 1− 6

∑n
i=1 (rankIntelliShopper(i)− rankuser(i))2

n(n2 − 1)

where n is the number of hits ranked in each session.
The idea is that if the learning agent is effective, the cor-

relation between the ranks learned by the system and the
ranks inferred from user feedback should increase over ses-
sions. Figure 6 plots the mean Spearman’s rank correla-
tion coefficient against the number of shopping sessions. Af-
ter the first three shopping session we observe a significant

Figure 6: Spearman’s correlation between IntelliSh-
opper’s ranking and ranks inferred from user feed-
back. A correlation coefficient is computed for every
user/session/query, then these are averaged across
users and queries in each session number. Error bars
correspond to ±1 standard error.

improvement in performance, indicating that the learning
agent is effectively predicting user preferences.

6. CONCLUSION
This paper introduced IntelliShopper, a shopping assis-

tant designed to empower consumers by adapting to their
personal preferences, searching proactively on their behalf,
and protecting their privacy. IntelliShopper can learn a
user profile without requiring explicit feedback from users,
but rather observing their actions in an unobtrusive fash-
ion. The feasibility of the approach has been demonstrated
through an implemented, publicly available prototype. This
prototype has also allowed us to evaluate the performance
of IntelliShopper’s learning agent, showing that the system
can quickly build user profiles that can rank items according
to user preferences.

Several extensions and improvements of the current pro-
totype are under way. First, we will implement the pri-
vacy agent to demonstrate the feasibility of the proposed
anonymity and pseudonymity protocols for guaranteeing the
privacy of the users. The privacy agent will also enable a
more straightforward implementation of multiple shopping
personae for each user, allowing the learning agent to bet-
ter adapt to the heterogeneous shopping needs of real users.
Other immediate additions to the prototype will include new
vendor modules for online stores and an option to allow users
to specify preferences among vendors.

Future versions of IntelliShopper will include several up-
dates to the learning agent, improving the system’s ability
to adapt to user preferences. More simple features (such as
brand name) will be added,subject to our ability to consis-
tently extract them from the item page. We will also add a
more sophisticated similarity mechanism that compares hits
to other items that have been judged by the user. The tem-
perature combination scheme will be made adaptive, so that,
for instance, if a particular user often makes decisions based
on price, the price feature will be more highly weighted in



ranking hits. The α1, α2 parameters in Equation 1 can also
be tuned adaptively to efficiently track dynamic profiles.

We will explore the use of temperature settings from previ-
ously-learned profiles to bootstrap the profiles of new per-
sonae. It is reasonable to assume that some information
from a user’s existing personae would be useful when ranking
hits for a new persona’s queries; for example, a user might
often prefer low-priced items. However, this might compro-
mise the identity of the user. In order to avoid the complete
loss of learned profiles during the creation of a new persona,
a few features of the profile may be transferred to a new per-
sona by the user. There are a few ways to improve privacy
at this stage: (i) perform the task simultaneously with many
users; (ii) stagger the introduction of a new persona with the
cessation of a previous one; (iii) shed personae frequently; or
(iv) use very concise profile templates when starting a new
persona. Solution (i) is logistically difficult; all other solu-
tions, on the other hand, hinder efficient learning. Therefore
the privacy and learning aspects of the shopping agent need
to be balanced against each other. This may be done by the
user — on a per persona basis — by selecting an appropriate
trade-off between privacy and personalization.

The user interface can be improved to allow for better
learning based on user actions and more efficient database
transactions. For example, we plan to allow users to choose
multiple items to be removed simultaneously from the pre-
sented list of hits. Such an action will reduce the number of
database transactions and will render feedback to the learn-
ing agent more consistent. Furthermore, the interface should
communicate better the learning that is taking shape to the
user, by emphasizing and de-emphasizing items based on the
learned knowledge.

A direction for future research is to study the opportu-
nities for collaborative filtering that stem from centralized
shopping assistants such as IntelliShopper. The effectiveness
of collaborative filtering is well established. It would not be
difficult, at the users’ option, to cluster personae based on
their profiles, and then extend a request’s hit set with items
previously located on behalf of other personae with simi-
lar profiles. This could be done irrespective of queries, or
subject to some minimal similarity between queries.

We mentioned the need for more robust and/or adap-
tive wrappers to interface with vendor sites. Alternatively,
vendors may find it economically advantageous to become
“friendly” to shopping agents such as IntelliShopper, that
put the customer at the center of the business relationship,
not only based on price competition but on a number of
other factors. We view this as a better business model than
either price-only bots or, worse, comparison shopping agents
that are biased by hidden fees from vendors. The first gen-
eration on user-centered shopping bots did not survive the
transition to the commercial realm; bots such as Person-
aLogic, Firefly and Jango were quickly replaced by the cur-
rent vendor-biased agents. The ultimate fate of the new
generation of shopping assistants proposed here will be like-
wise decided by the marketplace.
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