
Meta-Evolutionary Ensembles

YongSeog Kim yong-s-kim@uiowa.edu

W. Nick Street nick-street@uiowa.edu

Filippo Menczer filippo-menczer@uiowa.edu

Management Sciences Department, University of Iowa, Iowa City, IA 52242 USA

Abstract

Ensemble methods have shown the poten-
tial to improve on the performance of indi-
vidual classi�ers as long as the members of
the ensamble are suÆciently diverse. Indi-
vidual classi�ers have been trained for ex-
ample on selected subsets of the records or
on projections of the feature space to pro-
duce diversity. The resulting ensembles re-
ect a priori decisions about how to allo-
cate records or features across classi�ers. In
this paper we propose a meta-evolutionary
approach in which both individual classi�ers
and groups adapt. Ensembles compete for
member classi�ers, and are rewarded based
on their predictive performance. Individ-
ual classi�ers also evolve, competing to cor-
rectly classify test points, and are given ex-
tra rewards for getting diÆcult points right.
In this way we aim to optimize ensembles
rather than form ensembles of individually-
optimized classi�ers. Our preliminary results
on a small number of data sets suggest that
this approach can generate ensembles that
are more e�ective than single classi�ers and
competetive with traditional ensemble meth-
ods. In the long run, this approach will pro-
vide new insight into how ensembles should
be optimally constructed.

1. Introduction

In recent years, a great deal of interest in the ma-
chine learning community has been generated by en-
semble classi�ers. These are predictive models that
combine the predictions of a collection of individual
classi�ers, such as decision trees or arti�cial neural net-
works. Popular method such as Boosting, Bagging and
Stacking di�er in the ways that individual predictors
are constructed, and in how their votes are combined.
However, they have all demonstrated consistent { in
some cases, remarkable { improvements in predictive
accuracy over standard methods.

Much of the power of these methods comes from the di-
versity of the component classi�ers. Intuitively, gath-
ering a collection of problem solvers is only valuable if
they are both accurate and diverse in their solutions.
For instance, Boosting explicitly rewards a component
classi�er for correctly predicting diÆcult points, and
is grounded by theoretical results that prove its e�ec-
tiveness. The necessary diversity can be obtained in
many ways, such as using di�erent learning algorithms
for the base classi�ers, sampling the training examples,
or projecting the examples onto di�erent feature sub-
spaces. However, little attention has been paid to the
idea of creating an optimal collection of classi�ers, or
indeed, what the idea of \optimality" might even mean
in such a context.

We propose to directly optimize ensembles by creating
an two-level evolutionary environment. The various
ensembles in this environment compete directly with
one another, being judged on their estimated predic-
tive performance. In addition, the underlying classi-
�ers also compete with each other, being rewarded for
correctly predicting the training examples. This re-
ward is greater if the point in question is diÆcult, i.e.,
if it has been incorrectly classi�ed by most of the other
classi�ers in the ensemble. We use feature selection as
the mechanism for individual diversity.

In this paper, we demonstrate the feasibility of such

a model and show that the predictive accuracy ob-
tained is better than a single classi�er, and as good
as traditional ensemble methods. In the long term,
this work is a step toward a clearer understanding of
why ensembles are e�ective, and how they can best be
constructed.

The remainder of this paper is organized as follows.
In Section 2 we review ensemble methods and feature
selection algorithms, both separately and in combina-
tion. In Section 3 we present our bi-level approach to
the ensemble feature construction, Meta-Evolutionary
Ensembles (MEE) in detail. Section 4 presents and
analyzes our experimental results. Section 5 addresses
the directions of future research and concludes the pa-
per.

2. Ensemble methods and feature

selection

2.1 Ensemble methods

Recently many researchers have combined the predic-
tions of multiple classi�ers to produce a better classi-
�er, an ensemble, and often reported improved per-
formance (Breiman, 1996b; Bauer & Kohavi, 1999;
Wolpert, 1992). Bagging (Breiman, 1996b) and Boost-
ing (Freund & Schapire, 1996; Schapire, 1990) are the
most popular methods for creating accurate ensem-
bles. Bagging is a bootstrap ensemble method that
trains each classi�er on a randomly drawn training
set. Each classi�er's training set consists of the same
number of examples randomly drawn from the origi-
nal training set, with the probability of drawing any
given example being equal. Samples are drawn with
replacement, so that some examples may be selected
multiple times while others may not be selected at all.
As a result, each classi�er could return a higher test
set error than a classi�er using all of the data. How-
ever, when these classi�ers are combined (typically by
voting), the resulting ensemble produces lower test set
error than a single classi�er. The diversity among indi-
vidual classi�ers compensates for the increase in error
rate of any individual classi�er and improves predic-
tion performance.

Boosting (Freund & Schapire, 1996) produces a series
of classi�ers, with each training set based on the per-
formance of the previous classi�ers. New classi�ers are
constructed to better predict examples for which the
current ensemble's performance is poor. This is ac-
complished using adaptive resampling, i.e., examples
that are incorrectly predicted by previous classi�ers
are sampled more frequently, or alternately given a
higher cost of misclassi�cation. Boosting can be imple-

mented in two di�erent ways, Arcing (Breiman, 1996a)
and AdaBoosting (Freund & Schapire, 1996). In Arc-
ing, the classi�ers' votes are weighted equally, while
AdaBoost weights the predictions based on the classi-
�ers' training error.

The e�ectiveness of Bagging and Boosting can be ex-
plained based on the bias-variance decomposition of
classi�cation error (Bauer & Kohavi, 1999). Bagging
and Boosting are known to reduce errors by reduc-
ing the variance term (Breiman, 1996a). According
to (Freund & Schapire, 1996), Boosting also reduces
errors in the bias term by focusing on the misclassi-
�ed examples. It is noted that Boosting's e�ectiveness
depends more on the data set than on the component
learning algorithms, and it is often more accurate than
Bagging. However, Boosting, unlike Bagging, can cre-
ate ensembles that are much less accurate than a single
classi�er. In particular, Bagging performs much bet-
ter than Boosting on noisy data sets because Boosting
can easily over�t data by focusing more on the mis-
classi�ed examples (Dietterich, 2000). In most cases,
the improved performance of an ensemble is largely
obtained by combining the �rst few classi�ers (Opitz
& Maclin, 1999).

2.2 Feature subset selection

Feature selection is de�ned as the process of choosing
a subset of the original predictive variables by elim-
inating redundant and uninformative ones. In many
cases this can reduce over�tting and lead to better
generalization. Most feature selection research has
focused on heuristic search approaches, such as se-
quential search (Kittler, 1986), nonlinear optimization
(Bradley et al., 1998), and genetic algorithms (Yang
& Honavar, 1998).

Our approach is based on the wrapper model (Ko-
havi & John, 1997) of feature selection, which requires
two components: a search algorithm that explores the
combinatorial space of feature subsets, and one or
more criterion functions that evaluate the quality of
each subset based directly on the predictive model. In
this work, we use arti�cial neural networks (ANNs) as
an induction algorithm to evaluate the quality of the
selected feature subsets. As a search algorithm, we
turn to evolutionary algorithms (EAs) to intelligently
search the space of possible feature subsets. An EA
is a parallel and global search algorithm that works
with a population of solutions to simultaneously eval-
uate many points in the search space. Standard EAs
often converge prematurely to local optima and em-
ploy computationally expensive global selection mech-
anisms. We instead use a new evolutionary algorithm

that maintains diversity by employing a local selec-
tion scheme. This Evolutionary Local Selection Algo-
rithm (ELSA) has been successfully applied to multi-
objective optimization problems, such as feature se-
lection in both supervised and unsupervised learning
(Menczer et al., 2000; Kim et al., 2000).

We employ feature selection not only to increase the
prediction accuracy of an individual classi�er but also
to promote diversity among component classi�ers in
an ensemble (Opitz, 1999). The diversity among com-
ponent classi�ers of ensemble has been proved criti-
cal to attain higher generalization accuracy (Krogh &
Vedelsby, 1995; Hashem, 1997; Opitz & Shavlik, 1996).
An ensemble generalizes well by combining many accu-
rate component classi�ers that make errors on di�er-
ent parts of data. According to (Hansen & Salamon,
1990), the expected error for an example i, Errori ,
can be reduced to zero by adding in�nite number of
classi�ers if Errori < 0:5 and component classi�ers
are independent in the production of errors. Ensem-
ble feature selection is based on the notion that dif-
ferent feature subsets among component classi�ers of
an ensemble can provide the necessary diversity. It is
similar to the notion that di�erent training samples
among component classi�ers provide the necessary di-
versity in ordinary ensemble methods.

2.3 Ensemble feature selection algorithms

The improved performance of ordinary ensemble meth-
ods comes primarily from the diversity caused by re-
sampling training examples. However, ensemble meth-
ods typically use the complete set of features to train
component classi�ers. Recently several attempts have
been made to incorporate the diversity in feature di-
mension into ensemble methods. The Random Sub-
space Method (RSM) in (Ho, 1998b; Ho, 1998a) was
one early algorithm that constructed an ensemble by
varying the feature subset. RSM used C4.5 as a base
classi�er and randomly chose half of the original fea-
tures to build each classi�er. Each classi�er tree was
constructed after all the training examples were pro-
jected to the subspace of selected features. The pre-
dictions were combined by simple majority voting. In
comparative experiments, RSM demonstrated better
performance on four public data sets than a single
tree classi�er with all the features and examples, and
also outperformed Bagging and Boosting on the full-
dimensional data sets (Ho, 1998b; Ho, 1998a).

A more sophisticated way to select a subset of fea-
tures for ensembles was proposed in (Guerra-Salcedo
& Whitley, 1999). They used a genetic algorithm
(GA) to explore the space of all possible feature sub-

sets. Their experiments paired four di�erent ensemble
methods, including Bagging and AdaBoost, with three
di�erent feature selection algorithms: complete, ran-
dom, and genetic search. Using two table-based classi-
�cation methods, ensembles constructed using features
selected by the GA showed the best performance, fol-
lowed by RSM.

Genetic Ensemble Feature Selection (GEFS) (Opitz,
1999) also used a GA to search for possible feature
subsets. Component classi�ers (ANNs) in GEFS were
explicitly evaluated in terms of both generalization
accuracy and diversity. GEFS starts with an initial
population of classi�ers built using up to 2 � D fea-
tures, where D is the complete feature dimension. Us-
ing a variable feature subset size promotes diversity
among the classi�ers and allows some features to be
selected more than once. Crossover and mutation op-
erators search for new feature subsets, and new can-
didate classi�ers are built for each of the new feature
sets. Finally, GEFS prunes the population to the 100
most-�t members and majority voting is applied to
determine the ensemble prediction. GEFS produces
a good initial population, and in most cases produces
better results the longer it runs. GEFS reported better
estimated generalization than Bagging and AdaBoost
on about two-thirds of 21 data sets tested. Longer
chromosomes, however, make GEFS computationally
expensive in terms of memory usage (Guerra-Salcedo
& Whitley, 1999). Further, GEFS evaluates each clas-
si�er after combining two objectives in a subjective
manner using fitness = accuracy+� diversity, where
diversity is the average di�erence between the predic-
tion of component classi�ers and the ensemble. Since
there is no obvious way to set the value of �, GEFS dy-
namically adjusts the parameter based on the discrete
derivatives of the ensemble error, the average popula-
tion error and the average diversity within the ensem-
ble.

Although all these methods reported improved perfor-
mance using feature selection for ensemble construc-
tion ensemble, they have one common limitation in
methodology: only one ensemble is considered. In this
paper, we propose a new algorithm for ensemble fea-
ture selection, Meta-Evolutionary Ensembles (MEE),
that considers multiple ensembles simultaneously and
allows each component classi�ers to move into the
best-�t ensemble. Genetic operators change the en-
semble membership of the individual classi�ers, al-
lowing the size and membership of the ensembles to
change over time. By having the various ensembles
compete for limited resources, we can optimize their
predictive performance.

In order to avoid costly global selection common to
most GAs, we use a local selection mechanism in which
classi�ers compete with each other only if they belong
to the same ensemble. Using ANNs as the base classi-
�er and this EA for feature selection, we evaluate and
reward each classi�er based on two di�erent criteria,
accuracy and diversity. A classi�er that correctly pre-
dicts data examples that other classi�ers in the same
ensemble misclassify contributes more to the accuracy
of the ensemble to which it belongs. We imagine that
some limited \energy" is evenly distributed among the
examples in the data set. Each classi�er is rewarded
with some portion of the energy if it correctly predicts
an example. The more classi�ers that correctly clas-
sify a speci�c example, the less energy is rewarded to
each, encouraging them to correctly predict the more
diÆcult examples. The predictive accuracy of each
ensemble determines the total amount of energy to be
replenished at each generation. Finally, we select the
ensemble with the highest accuracy as our �nal classi-
�cation model.

3. Meta-Evolutionary Ensembles

Pseudocode for the Meta-Evolutionary Ensembles
(MEE) algorithm is shown in Figure 1, and a graphi-
cal depiction of the energy allocation scheme is shown
if Figure 3. Each agent (candidate solution) in the
population is �rst initialized with randomly selected
features, a random ensemble assignment, and an ini-
tial reservoir of energy. The representation of an agent
consists of D+ log2(G) bits. D bits correspond to the
selected features (1 if a feature is selected, 0 other-
wise). The remaining bits are a binary representation
of the ensemble index, where G is the maximum num-
ber of ensembles. Mutation and crossover operators
are used to explore the search space. A mutation oper-
ator randomly selects one bit of an agent and mutates
it. Our crossover operator follows the commonality-
based crossover framework (Chen et al., 1999). It takes
two agents, a parent a and a random mate, and scans
through the bits of the two agents. If a di�erence is
found, the value of the bit in a is ipped with a prob-
ability of 0.25. In this process, the mate contributes
only to construct the o�spring's bit string, which in-
herits all the common features of the parents.

In each iteration of the algorithm, an agent explores a
candidate solution (classi�er) similar to itself, obtained
via crossover and mutation. The agent's bit string is
parsed to get a feature subset J . An ANN is then
trained on the projection of the data set onto J , and
returns the predicted class labels for the test examples.
The agent collects �E from each example it correctly

initialize population of agents, each with energy �=2
while there are alive agents in Popi and i < T

for each ensemble g
for each record r in Datatest

prevCountg;r = countg;r
countg;r = 0

endfor

endfor

for each agent a in Popi

a0 = mutate(crossover(a; randomMate))
g = group(a0)
train(a0)
for each record r in Datatest

if (class(r) == prediction(r; a0))
countg;r ++
�E = Eg;r

envt
=min(5; prevCountg;r)

Eg;r

envt
= Eg;r

envt
��E

Ea = Ea +�E
endif

endfor

Ea = Ea � Ecost

if (Ea > �)
insert a; a0 into Popi+1

Ea0 = Ea=2
Ea = Ea � Ea0

else if (Ea > 0)
insert a into Popi+1

endif

endfor

for each ensemble g
accug = computeEnsembleAccuracy(g;Datatest)

endfor

for each ensemble g
Eg
envt = Etot

envt=size(Pop
i+1)

Eg

envt
� = size(g) � 2 � (inverseRankByAccuracy(g) + 1)=(G+ 1)

for each record r in Datatest
Eg;r

envt
= Eg

envt
=size(Datatest)

endfor

endfor

i = i + 1
endwhile

Figure 1. Pseudo-code of Meta-Evolutionary Ensembles
(MEE) algorithm. In each iteration, the environmental
energy for each pair of an ensemble g and a test exam-
ple r is replenished based on the predictive accuracy of g.
The main loop calls agents in random order and agents are
rewarded based on their accuracy on each test record r,
normalized by the number of other agents that correctly
classify r in the same ensemble.

2
g

g
1

g
1 ng

2
g

ng

Energy

.

.

Environment

Figure 2. Graphical depiction of energy allocation in the
MEE algorithm. Individual classi�ers (small boxes in the
environment) receive energy by correctly classifying test
points. Energy for each ensemble is replenished between
generations based on the accuracy of the ensemble. En-
sembles with higher accuracy have their energy bins re-
plenished with more energy per classi�er, as indexed by
the varying widths of the bins.

classi�es, and is taxed once with Ecost. The net energy
intake of an agent is determined by its �tness. This is
a function of how well the candidate solution performs
with respect to the classi�cation task. But the energy
also depends on the state of the environment. We
have an energy source for each ensemble, divided into
bins corresponding to each data point. For ensemble
g and record index r in the test data, the environment
keeps track of energy E

g;r
envt and the number of agents

in ensemble g, countg;r that correctly predict record
r. The energy received by an agent for each correctly
classi�ed record r is given by

�E =
E
g;r
envt

min(5; prevCountg;r)
:

An agent receives greater reward for correctly predict-
ing an example that most in its ensemble get wrong.
The min function ensures that for a given point there is
enough energy to reward at least 5 agents in the new
generation. Candidate solutions receive energy only
inasmuch as the environment has suÆcient resources;
if these are depleted, no bene�ts are available until
the environmental resources are replenished. Thus an
agent is rewarded with energy for its high �tness val-
ues, but also has an interest in �nding unpopulated
niches, where more energy is available. The result is
a natural bias toward diverse solutions in the popula-
tion. Ecost for any action is a constant (Ecost < �).

In the selection part of the algorithm, an agent com-
pares its current energy level with a constant repro-
duction threshold �. If its energy is higher than �,
the agent reproduces: the agent and its mutated clone
that was just evaluated become part of the new popu-

lation, with the o�spring receiving half of its parent's
energy. If the energy level of an agent is positive but
lower than �, only that agent joins the new population.
The population size is independent of the reproduction
threshold; � only a�ects the energy stored by the pop-
ulation at steady-state.

The environment for each ensemble is replenished with
energy based on its predictive accuracy, as determined
by majority voting with equal weight among base clas-
si�ers. We sort the ensembles in ascending order of es-
timated accuracy and apportion energy in linear pro-
portion to that accuracy, so that the most accurate en-
semble is replenished with the greatest amount of en-
ergy per base classi�er. Since the total amount of en-
ergy replenished also depends on the number of agents
in each ensemble, it is possible that an ensemble with
lower accuracy can be replenished with more energy
in total than an ensemble with higher accuracy. Note
that the total replenishment energy that enters the
system at each iteration is �xed and is independent of
the population size.

4. Experimental Results

We tested the performance of MEE on several publicly
available data sets (Blake & Merz, 1998). We show
the characteristics of our data sets in Table 1. For
comparison purposes we chose several data sets that
were also used in (Opitz, 1999).

The weights and biases of the neural networks are
initialized randomly between 0.5 and -0.5, and the
number of hidden node is determined heuristically asp
inputs. The other parameters for the neural net-

works include a learning rate of 0.1 and a momen-
tum rate of 0.9. The number of training epochs was
kept small, both for computational reasons and to
maintain consistency with published expeirments us-
ing GEFS. The values for the various ELSA param-
eters are: Pr(mutation) = 1.0, Pr(crossover) = 0.8,
Ecost = 0.2, � = 0.3, and T = 30. The value of Etot

envt

is chosen to maintain a population size around 100
classi�er agents.

All computational results for MEE are based on the
performance of the best ensemble and are averaged
over �ve standard 5-fold cross-validation experiments.
For each 5-fold cross-validation the original data set
is �rst partitioned into 5 equal-sized sets, each main-
taining the original class distribution. Each set is in
turn used as an evaluation set while the classi�cation
system is trained on the other four sets. Within the
training algorithm, each ANN is trained on two-thirds
of the training set and tested on the remining third for

Table 1. Summary of the data sets used in the computational experiments.

Features Neural Network

Dataset Records Classes Continuous Discrete Inputs Epochs

diabetes 768 2 8 - 8 30

heart-cleveland 303 2 8 5 13 40

hepatitis 150 2 6 13 32 60

house-votes-84 435 2 - 16 16 40

ionosphere 351 2 34 - 34 40

iris 159 3 4 - 7 80

sonar 2080 2 60 - 60 100

wine 178 3 13 - 13 30

energy allocation purposes.

Experimental results are shown in Table 2. We present
the performance of a single neural network using the
complete set of features as a baseline algorithm. In the
win-loss-tie results shown at the bottom of Table 2, a
comparison is considered a tie if the intervals de�ned
by one standard error of the mean overlap. On the
data sets tested, MEE shows consistent improvement
over a single neural network.

We also include the results of Bagging, AdaBoost, and
GEFS from (Opitz, 1999) for indirect comparison. In
these comparisons, we did not have access to the ac-
curacy results of the individual runs. Therefore, a tie
is conservatively de�ned as a test in which the one-
standard-deviation interval of our test contained the
point estimate of accuracy from (Opitz, 1999). Our
algorithm demonstrates competitive performance to
that of the other algorithms. We note that such com-
parisons are inevitably inexact, since subtle method-
ological di�erences can cause variations in estimated
accuracy. For instance, the results in (Opitz, 1999)
are based on �ve 10-fold cross validation experiments,
which generally result in higher estimated accuracy
than those from 5-fold cross validation.1

It is also possible that the larger ensemble size used
in GEFS contributes to improved accuracy. How-
ever, our preliminary results indicate that accuracy
improvements atten out at an ensemble size of ap-
proximately 15-25, seeming to con�rm the results in
(Opitz & Maclin, 1999). In fact, we expect that by
optimizing the ensemble construction process, MEE
will in general achieve comparable accuracy to other
methods using fewer individuals.

We note that while it is generally a good idea to over-
�t the individual classi�ers in an ensemble, we have
not done so in the reported experiments, and may in
fact be under�tting. As a preliminary test of the ap-

1This was con�rmed with preliminary tests using single
neural networks a few data sets.

propriateness of over�tting in the MEE framework, we
have observed that on the Sonar data set, increasing
the number of epochs by 40 resulted in signi�cantly
improved performance.

5. Conclusions

In this paper, we propose a new ensemble construc-
tion algorithm, Meta-Evolutionary Ensembles (MEE).
This algorithm employs a novel two-level evolution-
ary search through the space of ensembles, using fea-
ture selection as the diversity mechanism. At the �rst
level, individual classi�ers compete against each other
to correctly predict held-out examples. Classi�ers are
rewarded for predicting diÆcult points, relative to the
other members of their respective ensembles. At the
top level, the ensembles compete directly based on
classi�cation accuracy. Our preliminary experimental
results indicate that this method is consistently bet-
ter than a single classi�er, and approximately equal in
quality to Bagging, Boosting and GEFS.

We see this work as an initial step toward a better un-
derstanding of how and why ensemble methods achieve
improved predictive accuracy. Then next step is to
compare this algorithm more rigorously to others on
a larger collection of data sets, and perform any nec-
essary performance tweaks on the EA energy alloca-
tion scheme. Along the way, we will examine the role
of various characteristics of ensembles (size, diversity,
etc.) and classi�ers (type, number of dimensions /
data points, etc.). By giving the system as many de-
grees of freedom as possible and observing the charac-
teristics that lead to successful ensembles, we can di-
rectly optimize these characteristics and translate the
results to a more scalable architecture for large-scale
predictive tasks.

Acknowledgements

This work was supported in part by NSF grant IIS-99-
96044.

Table 2. Experimental results, including win-loss-tie counts

Single Net MEE
Dataset Avg. S.D. S.E. Bagging AdaBoost GEFS Avg. S.D. S.E.
diabetes 76.5 0.5 0.2 77.2 76.7 77.0 77.1 0.4 0.2
heart-cleveland 81.1 1.5 0.7 83.0 78.9 83.9 83.6 1.0 0.4
hepatitis 81.8 0.5 0.2 82.2 80.3 83.3 85.0 1.5 0.7
house-votes-84 95.2 0.6 0.3 95.9 94.7 95.6 95.2 0.7 0.3
ionosphere 86.4 1.4 0.6 90.8 91.7 94.6 89.3 1.1 0.5
iris 95.4 0.9 0.4 96.0 96.1 96.7 96.0 0.8 0.4
sonar 81.0 1.5 0.7 83.2 87.0 82.2 83.4 0.6 0.3
wine 98.1 0.5 0.2 { { { 99.3 0.2 0.1
Single Net 4-3-0 2-2-3 4-0-3 6-0-2
Bagging 3-4-0 4-3-0 1-2-4
AdaBoost 6-1-0 2-2-3
GEFS 2-1-4

References

Bauer, E., & Kohavi, R. (1999). An empirical com-
parison of voting classi�cation algorithms: Bagging,
boosting, and variants. Machine Learning, 36, 105{
139.

Blake, C., & Merz, C. (1998). UCI
repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
University of California, Irvine, Department of In-
formation and Computer Sciences.

Bradley, P. S., Mangasarian, O. L., & Street, W. N.
(1998). Feature selection via mathematical program-
ming. INFORMS Journal on Computing, 10, 209{
217.

Breiman, L. (1996a). Bias, variance, and arcing clas-
si�ers (Technical Report 460). University of Califor-
nia, Department of Statistics, Berkeley, California.

Breiman, L. (1996b). Stacked regression. Machine
Learning, 24, 49{64.

Chen, S., Guerra-Salcedo, C., & Smith, S. (1999).
Non-standard crossover for a standard representa-
tion { commonality-based feature subset selection.
GECCO-99: Proceedings of the Genetic and Evo-
lutionary Computation Conference. Morgan Kauf-
mann.

Dietterich, T. (2000). An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting and randomization.
Machine Learning, 40, 139{157.

Freund, Y., & Schapire, R. (1996). Experiments with
a new boosting algorithm. Proc. 13th Int'l Conf. on
Machine Learning (pp. 148{156). Bari, Italy.

Guerra-Salcedo, C., & Whitley, D. (1999). Genetic
approach to feature selection for ensemble creation.
GECCO-99: Proceedings of the Genetic and Evo-
lutionary Computation Conference (pp. 236{243).
Morgan Kaufmann.

Hansen, L., & Salamon, P. (1990). Neural network
ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12, 993{1001.

Hashem, S. (1997). Optimal linear combinations of
neural networks. Neural Networks, 10, 599{614.

Ho, T. (1998a). C4.5 decision forests. Proc. 14th Int'l
Conf. on Pattern Recognition (pp. 545{549).

Ho, T. (1998b). The random subspace method for
constructing decision forests. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20, 832{
844.

Kim, Y., Street, W. N., & Menczer, F. (2000). Fea-
ture selection in unsupervised learning via evolu-
tionary search. Proc. 6th ACM SIGKDD Int'l Conf.
on Knowledge Discovery & Data Mining (KDD-00)
(pp. 365{369).

Kittler, J. (1986). Feature selection and extraction.
Handbook of Pattern Recognition and Image Pro-
cessing. New York: Academic Press.

Kohavi, R., & John, G. (1997). Wrappers for feature
subset selection. Arti�cial Intelligence, 97, 273{324.

Krogh, A., & Vedelsby, J. (1995). Neural network en-
sembles, cross validation, and active learning. Ad-
vances in Neural Information Processing Systems
(pp. 231{238). Cambridge, MA: MIT Press.

Menczer, F., Degeratu, M., & Street, W. N. (2000).
EÆcient and scalable pareto optimization by evo-
lutionary local selection algorithms. Evolutionary
Computation, 8, 223{247.

Opitz, D. (1999). Feature selection for ensembles. 16th
National Conf. on Arti�cial Intelligence (AAAI)
(pp. 379{384). Orlando, FL.

Opitz, D., & Maclin, R. (1999). Popular ensemble
methods: An empirical study. Journal of Arti�cial
Intelligence Research, 11, 169{198.

Opitz, D., & Shavlik, J. (1996). Actively searching for
an e�ective neural-network ensemble. Connection
Science, 8(3/4), 337{353.

Schapire, R. (1990). The strength of weak learnability.
Machine Learning, 5, 197{227.

Wolpert, D. (1992). Stacked generalization. Neural
Networks, 5, 241{259.

Yang, J., & Honavar, V. (1998). Feature subset se-
lection using a genetic algorithm. IEEE Intelligent
Systems and their Applciations, 13, 44{49.

