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Abstract

In this paper we consider the applicability of evo-
Iutionary multi-objective algorithms to the prob-
lem of unsupervised feature selection. Feature sub-
set selection is important not only for the insight
gained from determining relevant modeling vari-
ables but also for the improved understandability,
scalability, and possibly, accuracy of the resulting
models. We use ELSA, an evolutionary local selec-
tion algorithm that maintains a diverse population
of solutions that approximate the Pareto front in a
multi-dimensional objective space. Each evolved
solution represents a feature subset and a number
of clusters; a standard EM algorithm is applied to
learn the parameters of the given number of clus-
ters based on the selected features. Experimental
results on both real and synthetic data show that the
method can consistently identify a relevant subset
of input features and an appropriate number of clus-
ters. This results in models with better and clearer
semantic relevance.

1 Introduction

Feature selection is the process of choosing a subset of the
original predictive variables by eliminating redundant and un-
informative ones. By extracting as much information as pos-
sible from a given data set while using the smallest number
of features, we can save significant computing time and often
build models that generalize better to unseen points. Further,
it is often the case that finding a predictive subset of input
variables is an important problem in its own right.

We adopt the wrapper model [Kohavi and John, 1997] of
feature selection, which requires two components: a search
algorithm that explores the combinatorial space of feature
subsets, and one or more criterion functions that evaluate
the quality of each subset based directly on the predictive
model. Most feature selection research has focused on heuris-
tic search approaches, such as sequential search [Kittler,
19861, nonlinear optimization [Bradley et al., 1998], and ge-
netic algorithms [Yang and Honavar, 1998]. These meth-
ods considered feature selection in a supervised learning con-
text, evaluating potential solutions in terms of predictive ac-
curacy. We instead wish to find natural grouping of the ex-

amples in the feature space via clustering or unsupervised
learning. Clustering may be performed using methods such
as K-means [Duda and Hart, 19731, expectation maximiza-
tion (EM) [Dempster er al., 19771, or optimization models
[Bradley et al., 1997]. Recently a set of novel clustering
algorithms have been proposed in the database community
[Zhang et al., 1997; Guha er al., 1998]. For instance, Agrawal
et al., [1998] present an order-independent clustering algo-
rithm, CLIQUE, that forms clusters in large data sets. In this
paper, we use the standard EM algorithm with each solution’s
selected subset of features. By using the EM algorithm, we
can avoid the dependency of distance-based quality measure-
ments on the dimensionality of the selected feature space, as
observed in [Kim et al., 20001.

We use evolutionary algorithms (EAs) to intelligently
search the space of possible feature subsets (and the number
of clusters, K). While a number of multi-objective exten-
sions of evolutionary algorithms have been proposed in re-
cent years [Deb and Horn, 20001, most of them, such as the
Niched Pareto Genetic Algorithm [Horn, 1997], employ com-
putationally expensive selection mechanisms to favor domi-
nating solutions and to maintain diversity. Instead, we use a
new evolutionary algorithm that maintains diversity over mul-
tiple objectives by employing a local selection scheme.

After reviewing the EM algorithm in Section 2, in Sec-
tion 3 we discuss our approach, illustrating the evolutionary
algorithm, and describing how ELSA is combined with EM.
Section 4 presents some experiments with synthetic and real
data sets, and discusses the interpretation of the ELSA output
to select a subset of good features.

2 EM algorithm

The expectation maximization algorithm [Dempster et al.,
19771 is one of the most often used statistical modeling al-
gorithms [Cheeseman and Stutz, 1996] and often significantly
outperforms other clustering methods [Meila and Heckerman,
1998]. The EM algorithm assumes that the patterns are drawn
from one of several distributions, and the goal is to identify
the parameters of each distribution and their number. Start-
ing with an initial estimate of the parameters, it iteratively
recomputes the likelihood that each pattern is drawn from a
particular density function, and then updates the parameter
estimates.



Formally, let z,,, n = 1,---, N, be a data point and z,;
be the value of the j-th feature of x,,. Let d be the dimension
of the selected feature set, J, and K be the number of clus-
ters. If we model each cluster with a d-dimensional Gaussian
distribution, we can approximate the data distribution by fit-
ting K density functions cx, k = 1,---, K, to the data set
{zp|n =1,---,N}. The probability density function evalu-
ated at z,, is the sum of all densities:

K
P(zn) =Y pi - ci(znl6k) M)
k=1
where the a priori probability py, is the fraction of the data
points in cluster k& and Zle pr = 1, pr > 0. The functions
¢ (2n|0r) are the density functions for patterns of the cluster
k and @, are parameters such as mean and variance vector, uy
and X ;. The membership probability of pattern z,, in cluster
k is computed as follows:

pu(an) = —o e EnlO) )
> im1 Pi - ci(znl6;)

Now, the original problem of finding clusters is reduced
to the problem of how to estimate the parameters @ =
{61,---,0x} of the probability density. With the indepen-
dence assumption among attributes within a given cluster, we
can represent each density function as a product of density

functions over e¢ach selected attribute j = 1,- -+, d:
ck(@nl0r) = [ ] chi(@nslbrs) 3)
jed

where 0, represents the parameters of the j-th feature of
cluster k.

Finally, the maximum (log) likelihood (ML) method [Duda
and Hart, 1973] is used to maximize the probability of data
set given a particular mixture model as follows:

N K
L(©) = log (Zpk -ck(xnluk,Ek)> )
n=1 k=1

The EM algorithm begins with an initial estimation of ©
and iteratively updates it in such a way that the sequence of
L(0©) is non-decreasing. We outline the standard EM algo-
rithm in Figure 1.

3 Feature selection algorithm

3.1 Heuristic metrics for clustering

In our study we use three fitness criteria, described below.
One of the criteria is inspired by statistical metrics and two
by Occam’s razor. Each objective is normalized into the unit
interval and maximized by the EA.

Faccuracy: This objective is meant to favor cluster models
with parameters whose corresponding likelihood of data
is higher. With estimated distribution parameters,
and Xg, Fyccuracy is computed as follows:
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for each pattern z,, n € {1,---,N}
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endwhile

Figure 1: The summary of an EM algorithm where € > 0 is
a stopping tolerance. pt, pt, and X¢ represents the mixture
model parameters of cluster k at iteration £.

where Z 4 is an empirically derived, data-dependent nor-
malization constant.

Fopusters: Other things being equal, fewer clusters make the
model more understandable and avoid possible overfit-
ting. We implement this with the criterion

K- Kmin

Kmaw - Kmin

where Kooz (Kpmin) is the maximum (minimum) num-

ber of clusters the user chooses to consider.

Fclusters =1-

Feomplexity: This objective is aimed at minimizing the
number of selected features for easier interpretability of
solutions as well as better generalization:

d-—1

D-1

where D is the dimensionality of the full data set.

Fcomplewity =1-

3.2 Evolutionary local selection algorithm

ELSA springs from algorithms originally motivated by arti-
ficial life models of adaptive agents in ecological environ-
ments [Menczer and Belew, 1996]. In these models an agent’s
fitness results from individual interactions with the environ-
ment, which contains other agents as well as finite shared re-
sources. A more extensive discussion of the algorithm and
its application to Pareto optimization problems can be found
elsewhere [Menczer et al., 2000]. Figure 2 outlines the ELSA
algorithm.

Each agent (candidate solution) in the population is first
initialized with some random solution and an initial reser-
voir of energy. The representation of an agent consists of
D + K, — 2 bits. D bits correspond to the selected fea-
tures (1 if a feature is selected, O otherwise). The remain-
ing bits are a unary representation of the number of clusters.!
This representation is motivated by the desire to preserve the

!The cases of zero or one cluster are meaningless, therefore we
count the number of clusters as K = k + 2 where & is the number
ofones and 2 < K < Kpaz-



initialize Pmaz agents, each with energy 0/2
while there are alive agents in Pop® and t < T
for each energy source ¢ € {1,---,C}
foreach v € {0,---,1}
B, (0) < 20pmanBoost /C
endfor
endfor )
for each agent a in Pop®
o' + mutate(crossover(a, randommate))
for each energy source ¢ € {1,---,
v Fola')/Po(Fe(a'))
AE + min(v, Bt ,, (1))
By (v) By (0) = AE
E, « E, + AFE
endfor
Eq < Eq — Ecost
it (Eq > o)
insert a,a' into new population, PopH'1
E Ea/2
Ea — Ea — Eal
elseif (E, > 0)
insert a into new population, PopH'1
endif
t=t+1
endfor
i=i+1
endwhile

Figure 2: ELSA pseudo-code. See text for details.

regularity of the number of clusters under the genetic oper-
ators. Mutation and crossover operators are used to explore
the search space. A mutation operator randomly selects one
bit of an agent and mutates it. Our crossover operator takes
two agents, a parent ¢ and a random mate, and scans through
every bit of the two agents. If it locates a different bit, it flips
a coin to determine the offspring’s bit. In this process, the
mate contributes only to construct the offspring’s bit string,
which inherits all the common features of the parents.

The environment corresponds to the set of possible values
for each of the criteria being optimized.? We have an energy
source for each criterion, divided into bins corresponding to
its values. When the environment is replenished, each cri-
terion is allocated an equal share of energy, apportioned in
proportion to the fitness values in order to bias the population
toward more promising arcas in objective space. Note that the
total replenishment energy that enters the system at each iter-
ation is such that we can maintain a population size of py,q.
on average.

In cach iteration of the algorithm, an agent explores a can-
didate solution similar to itself; it is rewarded with some en-
ergy from the environment and taxed with a constant cost.
To compute the energy intake of an agent, for each objective
function, the environment scales the agent’s fitness value by
the number of agents sharing the corresponding bin. Candi-
date solutions receive energy only inasmuch as the environ-
ment has sufficient resources; if these are depleted, no bene-
fits are available until the environment is replenished. Thus
an agent is rewarded with energy for its high objective val-
ues, but also has an interest in finding unpopulated niches in
objective space, where more energy is available. In the se-
lection part of the algorithm, an agent compares its current
energy level with a constant reproduction threshold a. If its

2Here, C = 3 criteria; continuous objectives are discretized.

energy is higher than «, the agent reproduces: the agent and
its offspring that was just evaluated become part of the new
population, each with half of the parent’s original energy. If
the energy level is positive but lower than «, only the parent
agent joins the new population.

In order to assign energy to a solution based on the fitness
criteria, ELSA must form the given number of clusters based
on the selected features. In the experiments described here,
the clusters to be evaluated are constructed using the EM al-
gorithm described in Section 2. Each time a new candidate
solution is evaluated, the corresponding bit string is parsed
to get a feature subset J and a number of clusters K. The
EM algorithm is given the projection of the data set onto .J,
uses it to form K clusters, and returns the three fitness criteria
Faccuracy, Fclusters, and Fcomplewity'

4 Evaluation

It is difficult to evaluate the quality of an unsupervised learn-
ing algorithm, and feature selection problems present the
added difficulties that the clusters depend on the dimensional-
ity of the selected features. In order to evaluate our approach,
we construct a moderate-dimensional synthetic data set, in
which the distributions of the points and the significant fea-
tures are known, while the appropriate clusters in any given
feature subspace are not known. We evaluate the evolved so-
lutions by their ability to discover five pre-constructed clus-
ters in a ten-dimensional subspace. We also use a real data
set for which we have knowledge about the clusters and the
relevant features. In this case, we can evaluate the solutions
both by examining the selected features and by judging the
semantics of the resulting clusters.

For further comparisons we have implemented a greedy
heuristic algorithm known as the plus 2-take away 1 sequen-
tial selection algorithm [Kittler, 1986] using Fi,ccyracy as the
optimization criterion. It begins by finding the single dimen-
sion along which the objective is optimized. At each suc-
cessive step, the algorithm adds an additional feature that,
when combined with the current set, forms the best clusters.
It then checks to see if the least significant feature in the cur-
rent set can be eliminated to form a new set with superior
performance. This iteration is continued until all the features
have been added. We ran the algorithm for each of the values
of K considered by ELSA.

4.1 Experiments on a synthetic data set

We evaluate our approach on a synthetic data set which has
n = 500 points and D = 30 features. It is constructed so
that the first 10 features are significant, with 5 “true” clus-
ters consistent across these features. The next 10 features are
Gaussian noise, with points randomly and independently as-
signed to 2 normal clusters along each of these dimensions.
The remaining 10 features are white noise. The standard de-
viation of the normal distributions is o = 0.06 and the means
are themselves drawn from uniform distributions in the unit
interval, so that the clusters may overlap. We present some 2-
dimensional projections of the synthetic data set in Figure 3.

Individuals are represented by 36 bits, 30 for the fea-
tures and 6 for K (K., = 8). There are 10 energy bins



Figure 3: A few 2-dimensional projections of the synthetic
data set.

for each of the energy sources, Fuyysters, Fromplezity, and
Foccuracy. The values for the various ELSA parameters are:
Pr(mutation) = 1.0, Pr(crossover) = 0.8, Dmaz = 100,
E st =02, a=0.3, and T = 30,000.

For convenience, we call Pareto front the set of solutions
with the highest value of Fyccyracy at every Foomprezity value
for each different number of cluster K.2 We found Pareto
fronts based on all solutions evaluated and show them in Fig-
ure 4 for each K.
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Figure 4: The Pareto fronts of ELSA/EM with the composi-
tion of features selected (see text).

We omit the Pareto front for K = 8 because of its inferior-
ity in terms of clustering quality and incomplete coverage of
search space. We expect the Pareto front for any reasonable
K to take a typical shape: an ascent in the range of higher
values of Fiompieqity (Iower complexity), and a descent for
lower values of Feompiezity (higher complexity). This is rea-
sonable because adding additional significant features will
have a good effect on the the clustering quality with few pre-
selected features. However, adding noisy features will have

3Note that this is not the standard definition of Pareto front.

a negative effect on clustering quality. We note that the clus-
tering quality and the coverage of search space improves as
the used number of clusters approaches the “true” number of
clusters, K = 5. ELSA/EM finds the correct number of clus-
ters.

Note, however, that the selected features in the range of the
first 10 features, 2/3 < Feomplezity < 1, are not necessarily
all the “significant” features that we constructed. To quantify
this notion we show in Figure 4 the composition of selected
features, i.¢., the number of significant-Gaussian noise-white
noise features selected at Fiompregity = 0.69 where we could
identify all the significant 10 features.* We attribute this find-
ing to the fact that if one or more Gaussian noise features form
good clusters with the pre-selected significant features, the
clustering quality can be improved by adding these features.
This is also consistent with the notion that not all strongly rel-
evant features are selected and some weakly relevant features
could be selected as “relevant” features [Kohavi and John,
19971. The other Pareto fronts do not cover some ranges of
the feature space because of either the agents’ low Fiyysters
when K =7 or the agents’ low Foceuracy and Foomplezity
when K =2 and K = 3.

We also show snapshots of the Pareto front for K = 5 at
intervals of every 3,000 solution evaluations in Figure 5.

Paieb Fron fitenal= 1, k=5) Pareto Frort firterval =2, =5 Pareto Frort firterval =3, =5

5 3 g
[ [ [3
Conrage:7.5596 o Covege:91159 o Coveage:95215
Fonpexdy - -
Pare Front(enl= 4, K=5) Pareo Fort(tenval=5, K =5) Pareo Fort(tenval=7. K =5)
5 3 g
[ [ [3
Conrage: 104766 o Covemge: 11,1565 o Covemge: 112653
Fonpexdy - -
Pare Front(renl= & K=5) Pareo Fort(tenval =5, K =5) Parto Fontrenl= 10,K= 5)
§ & §
5 oo H
& 4, &
Conrage: 12659 o Covemge: 11880 o Covemge: 11526
gty Focmpny Feonply

Figure 5: The trend of the Pareto front for K = 5 at intervals
of every 3,000 solution evaluations. We omit the Pareto front
for interval 6 because it is same as the Pareto front for interval
5.

Similarly to the ELSA/K-means model [Kim et al., 20001,
ELSA/EM explores a broader portion of the search space and
thus identifies more accurate solutions across Feomplezity s
more agents are evaluated. The coverage in the ELSA/EM

4For K =2, we use Feomplezity =0.76 when K = 2 which is the
cloest value to 0.69 represented in Pareto front.



Number of selected features

K 2 3 4 5 6 7 Eval

o | ELSA/EM || 52.6£0.3 | 56.6+0.6 | 92.8+£52 | 100£0.0 | 1004£0.0 | 100£0.0 | 5.4
Greedy 51.8+1.3 | 52.820.8 | 554+£1.1 | 56.6+£0.4 | 62.8£3.2 | 80.2£8.5

3 | ELSA/EM || 83.244.8 5246.6 | 91.6+5.7 | 93.84+6.2 99£1.0 | 100£0.0 | 4 o0
Greedy 40.6+£0.3 | 40.8+£0.2 | 40.2+0.2 | 63.6£3.8 | 100£0.0 | 100X£0.0

4 | ELSA/EM || 462422 — | 50.6£0.6 | 89.6+5.9 52+1.0 | 60.6£5.1 | 4 5
Greedy 27.8£0.8 | 27.8£0.4 29+0.4 | 29.6+0.9 38t44 | 742+£3.5

5 | ELSA/EM || 44.6+£2.0 | 32.643.8 72438 | 624£19 | 66.44£3.7 | 88449 | 54
Greedy 23+0.4 | 22.2+0.8 | 24.24+09 | 23.8£0.5 | 29.6£1.7 | 81.2+£3.0
Eval 3-0-1 3-1-0 4-0-0 4-0-0 3-0-1 1-1-2 | 18-2-4

Table 1: The average of classification accuracy (%) with standard error of five runs of ELSA/EM and greedy search. The “-

entry indicates that no solution founded by ELSA/EM and the last row and column shows the number of win-loss-tie cases of

ELSA/EM compared with greedy.

model shown in Figure 5 is defined as the sum of Fyceyracy
values over all Fiomprezity values. We observe similar results
for different numbers of clusters K.

We finally evaluated our approach in terms of classifica-
tion accuracy and show our results in Table 4.1. We com-
pute accuracy by assigning a class label to each cluster based
on the majority class of the points contained in the cluster,
and then computing correctness on only those classes, ¢.g.,
models with only two clusters are graded on their ability to
find two classes. ELSA results represent individuals with less
than eight features from Pareto fronts. ELSA consistently
outperforms the greedy search on models with few features
and few clusters, exactly the sort of models the algorithm was
designed to find. For more complex models with more than
10 selected features (not shown), the greedy method is often
better able to reconstruct the original classes. This is rea-
sonable, since ELSA does not concentrate on this part of the
search space.

4.2 Experimental results on WPBC data

In addition to the artificial data set discussed above, we
also tested our algorithm on a real data set, the Wisconsin
Prognostic Breast Cancer (WPBC) data [Mangasarian er al.,
1995]. This data set records 30 numeric features quantifying
the nuclear grade of breast cancer patients at the University
of Wisconsin Hospital, along with two traditional prognostic
variables — tumor size and number of positive lymph nodes.
This results in a total of 32 features for each of 198 cases.

For the experiment, individuals are represented by 38 bits,
32 for the features and 6 for K (K. = 8). Other ELSA
parameters are the same as those used in the previous exper-
iment. We analyzed performance on this data set by looking
for clinical relevance in the resulting clusters. Specifically,
we can observe the actual outcome (time to recurrence, or
known disease-free time) of the cases in the various clusters.
Figure 6 shows a Kaplan-Meier estimate [Kaplan and Meier,
19581 of the true disease-free survival times for patients in
the clusters represented in one evolved agent. A solution for
this purpose was chosen with three clusters and the maximal
curvature along the Pareto front.
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Figure 6: Estimated survival curves for the groups found by
the ELSA-based clustering method on WPBC data.

The three groups displayed well-separated survival charac-
teristics. Five-year recurrence rates were 11.28%, 35.91%,
and 47.96% for the patients in the three groups. Further, the
best prognostic group was statistically significantly different
from the intermediate group (p < 0.05) and the intermediate
group was well-differentiated from the poor group (p < 0.03).
The chosen dimensions included a mix of nuclear morphome-
tric features such as the mean radius and fractal dimension,
the standard error of the radius, perimeter, area and smooth-
ness, and the largest value of the radius. We note that one of
the traditional medical prognostic factors, lymph node status,
is not chosen. If this finding were supported by other exper-
iments, the potentially hazardous surgical removal of lymph
nodes from patients could be avoided.

5 Conclusions

In this paper we presented a novel evolutionary multi-
objective local selection algorithm for unsupervised feature
selection. We used ELSA to search for possible combination
of features and numbers of clusters, with the guidance of the
EM algorithm. The combination of a multi-objective search



algorithm with unsupervised learning provides a promising
framework for feature selection. We summarize our findings
as follows.

e ELSA covers a large space of possible feature combina-
tions while simultaneously optimizing the multiple cri-
teria separately.

¢ The standard EM algorithm can be used to guide ELSA
by evaluating the quality of a subset of features, while at
the same time identifying the inherent numbers of clus-
ters.

¢ Most importantly, in the proposed framework we can re-
liably select an appropriate clustering model, including
significant features and the number of clusters. The re-
sult is a set of clusters that accurately models the data,
and is more interpretable due to the reduced dimension-
ality.

From a data mining perspective, our algorithm can easily
be used as a preprocessing step to determine an appropriate
set of features (and number of clusters), allowing the appli-
cation of iterative algorithms on much larger problems. In
future work we would like to compare the performance of
ELSA on the unsupervised feature selection task with other
multi-objective EAs, using each in conjunction with the stan-
dard EM algorithm.
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