
SUBMITTED TO IEEE TRANS. EVOL. COMP. 1

Emerging Small-World Referral Networks in
Evolutionary Labor Markets

Troy Tassier, Filippo Menczer

Abstract|We model a labor market that includes referral
networks using an agent based simulation. Agents maxi-

mize their employment satisfaction by allocating resources
to build friendship networks and to adjust search intensity.
We use a local selection evolutionary algorithm, which main-
tains a diverse population of strategies, to study the adap-
tive graph topologies resulting from the model. The evolved

networks display mixtures of regularity and randomness, as
in small-world networks. A second characteristic emerges
in our model as time progresses; the population loses e�-
ciency due to over-competition for job referral contacts in
a way similar to social dilemmas such as the tragedy of the

commons. Analysis reveals that the loss of global �tness is
driven by an increase in individual robustness, which allows
agents to live longer by surviving job losses. The behavior
of our model suggests predictions for a number of policies.

Keywords|Labor markets, referral networks, local selec-
tion, small-world, social dilemmas, a�rmative action.

I. Introduction

W
E use an evolutionary model to study a robust �nd-
ing in US labor markets: approximately 50% of

workers in the US economy �rst hear about their job
through a friend, relative, or other social contact [1], [2], [3],
[4], [5], [6].1 In particular, we use an evolutionary model
based on local selection algorithms [7], [8]. Such an ap-
proach di�ers from traditional genetic algorithms in two
main ways. First, individual �tness is not determined by
comparison to the �tness of other individuals in the popula-
tion. Instead agents survive and reproduce if they are able
to gather enough energy (in �xed supply) to meet a sur-
vival requirement. An agent survives if he �nds a suitable
strategy niche. This di�erence allows a more diverse popu-
lation to evolve. Second, since �tness is endogenous (there
is no predetermined �tness function), the population size
varies depending on the collective strategies of the existing
agents. These two characteristics make local selection algo-
rithms a natural choice to study diverse dynamic systems
such as economies and markets.
Previous research suggests that reducing the uncertainty

of a new hire is the primary reason for hiring by referral [9],
[10], [6]. Referral based hiring reduces uncertainty because
an employer can be more sure of the quality of a worker
if someone she knows refers the worker. Here, we concen-
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trate on another idea. In order for referral based hiring
to be e�ective, social networks must e�ciently transfer job
information. How are social networks able to do this? Peo-
ple do not usually pick friends in order to get a job. People
might pick friends for example because of similar interests
or geographic location. Therefore friends tend to exist in
clustered groups where the friends of a person tend to know
each other. If Jane is a friend of Ken and a friend of Judy,
it is likely that Ken and Judy are friends too.
Very clustered (locally structured) social networks in-

hibit the transfer of information. If everybody whom you
know also knows the same people, it will be di�cult for
information to transfer across social groups. For this rea-
son Granovetter [2] argues that friends outside of the usual
social circle of a person are especially important in locat-
ing jobs. These friends will hear about jobs that you and
your usual circle of friends will not. Therefore it would
seem that a network with a smaller amount of local struc-
ture would yield a better transfer of job information than
a social network.
In this paper we propose to model a simple labor market

with an agent based simulation. Agents attempt to max-
imize individual employment outcomes by choosing a mix
of social networks and direct job search. We then view the
characteristics of the social networks that develop to es-
tablish whether they transfer information e�ciently using
measures existing in the social network literature.
Our model yields two main results. First, the evolved

social networks resemble small-world networks [11]. There
is a large amount of local structure in the evolved net-
works. But the local structure does not signi�cantly a�ect
the ability of the network to transfer information between
members of the population. The result indicates that the
local structure we observe in real social networks does not
preclude e�cient information transfer.
Second, as evolution progresses agents over-compete

with regard to the amount of the search strategy employed.
Agents evolve toward expending more energy (on either so-
cial networks or direct search, depending on the relative
costs) than is e�cient for the population. However, the
strategy chosen appears individually e�cient; agents live
longer on average than at the point of maximum popula-
tion e�ciency. This result may be characterized as a social
dilemma because cooperation between agents would serve
to bene�t the population as a whole but doing so is not op-
timal for the individual agents. The second result helps us
to understand the di�erence between global (population)
and local (individual) e�ciency in our evolutionary model.
A detailed description of our model and the evolution-

ary algorithm we employ is given in the next section. We
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then characterize our results and place them in the con-
text of previously existing research in Section III. How
can programs that limit the importance of referral based
hiring (such as a�rmative action) be used to curb over-
networking in the form of \old-boys networks"? This and
other policy considerations based on our �ndings are dis-
cussed in Section IV.

II. The Model

The setup of our model has two components: jobs and
agents. Jobs in the economy are �xed in supply, with
randomly assigned, uniformly distributed wages. Agents
search for open jobs in the economy using two methods:
�rst, each agent is able to directly search for jobs. Ex-
pending e�ort on direct search increases the likelihood an
agent �nds a job on her own. We model direct search as an
abstraction of methods by which a person may improve the
likelihood of �nding a job. For instance many individuals
look for employment by reading classi�ed advertisements
in a newspaper, by applying to various �rms directly, or by
improving education. All of these methods are considered
direct search in our model.
Additionally, agents may choose to expend e�ort by mak-

ing friends. Friends are valuable because agents tell their
friends about the jobs they �nd through direct search. We
use the term \friend" to refer to all activities by which a
person may learn about a job from another person. Exam-
ples include: social events, telephone calls, electronic mail,
or personal conversations.
Agents will be subject to selection pressure in the econ-

omy. Each search method has an energy cost for the agent.
Agents gain energy by earning wages. The agents who run
out of energy die and the agents who gain in excess of a
threshold reproduce by cloning a duplicate agent with sim-
ilar search strategies and social networks.
Speci�cally, there are N agents in the economy indexed

as i. Note that N will change as the economy evolves. Let
Fi = [Fi1; Fi2; :::; Fifi] be the vector of friends of agent i
where each element refers to an agent currently alive in
the population. The size of Fi is fi, the number of friends
of agent i. We de�ne a social graph or referral network
by de�ning each agent i as a vertex and creating an un-
weighted directed edge from each element of Fi to i since
every element of Fi is another vertex in the graph. De�ne
an edge connecting a speci�c friend, j, of agent i as edge
(i; j). Agents de�ne an evolving social graph through their
choices of friends.
Let si 2 (0; 1) be the amount of e�ort used in direct

search by agent i; and let ei be the energy held by agent
i. Let W = [w1; w2 : : :wN0

] be the wages associated with
each job in the economy. Note that the number of jobs N0

is a �xed parameter. If agent i holds a job his wage is wi,
which corresponds to one of the wages in W . Each job can
only be occupied by one agent or a job may be vacant.
In each period t, each agent currently alive is charged

unit costs cs and cf for the amount of e�ort spent search-
ing and for the number of friends, respectively. The agent
receives replacement energy from his wage, wi. There is

also a �xed energy cost for each period, cmin. Therefore:

ei(t+ 1) = ei(t) � cmin � si(t)cs � fi(t)cf + wi(t): (1)

Now de�ne a reproduction threshold as �. If ei(t+1) > �,
agent i reproduces and a new agent j is formed. If
ei(t + 1) < 0, agent i dies. The evolutionary dynamic,
the distribution of jobs and wages, the costs of friends and
searching, and the network topology determine a carry-
ing capacity for the population in the economy. If agents
use energy e�ciently (through their choices of search and
friends) the size of the population increases.
In each period, the level of si and fi is subject to a shock

or mutation for every agent. Speci�cally, a draw from a uni-
form distribution [��s;+�s] is added to the agent's level of
search intensity. And, with probability �f , the agent gains
or loses a friend. These mutations provide the necessary
variation for the members of the population to evolve to-
ward an optimal network and search strategy.

A. The Simulation Algorithm

The simulation runs according to a local selection algo-
rithm. The algorithm's connection with ecological models
is discussed at length elsewhere [7], [12]. Here we focus on
the characteristics of the algorithm that are employed in
our job market model. The �tness of an agent is not de-
rived by ranking the members of the population. Instead,
an agent survives if she gathers enough energy to exceed
her costs. If an agent �nds a strategy niche that sustains
her, she survives even if other members of the population
do better. Thereby local selection maintains diversity in
a population. Additionally, because �tness is not prede-
termined, the systems de�nes an endogenous carrying ca-
pacity. A system subject to local selection carries as many
agents as are able to �nd successful strategies. Because of
the ability to maintain diversity in strategies and the abil-
ity to evolve a population size, local selection algorithms
provide a natural choice for modeling a labor market.
We provide an outline of the algorithm in Figure 1. In

period 0 of the simulation N0 agents are created with each
agent i having an initial level of search intensity, si = s0,
and an initial number of friends, fi = f0, for all i. We set
the initial levels of each as a parameter of the model. All
agents have the same strategy in the initial period. For
each agent i, fi directed non-duplicated edges are created
from random agents in the population to i. The set of these
edges across all agents de�nes an initial social network for
the population. Next, for each of N0 jobs a wage is chosen
from a uniform distribution in (0; 1). We randomly assign
each of these jobs to one member of the initial population.
Therefore there is full employment at period 0.
For each period following period 0, all agents go through

three loops: job search, energy allocation, and mutation.
In the job search loop agents are chosen in random order.
When an agent i is chosen she is allowed to attempt to up-
grade her job. To do so we maintain a list of the open jobs
in the economy. For each open job j in the economy, each
agent i in the population is noti�ed about j with proba-
bility si. Agent i may learn of job j on her own or one of
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Initialize N0 agents with s0 search
Initialize social graph with f0 random edges per agent
Initialize N0 jobs with random wages
Assign each job to an agent in the population
for Z periods

for each agent i

Notify i of available jobs based on si
Send information through the social network
Let i pick highest wage job
endfor

for each agent i

Collect costs cssi + cf fi + cmin

Pay wage wi to i if employed
if (ei > �)

Let i reproduce
else if (ei < 0)
Let i die
endif

Update social graph

endfor

for each agent i

Fire i with probability �

Mutate si and fi
Update social graph based on new fi
endfor

Measure statistics of the evolved social graph
endfor

Fig. 1. Psuedocode of the local selection evolutionaryalgorithm used
to simulate our job market.

her fi friends may tell her about a job. Information about
a job only travels one step along the social network. If an
agent tells a friend about a job, the friend is not allowed
to tell an additional friend. We chose to limit the number
of steps information travels across the network to model
the notion that referral based hiring adds certainty to the
hiring process. If information travels many steps the addi-
tional certainty an employer gains about a worker through
referral decreases because the referee is not likely to know
the potential employee well. Agent i picks the job with the
highest wage among the open jobs she hears about, or keeps
her current job if it has a higher wage. We continue the
job search loop until every agent has had an opportunity
to search for a job.
Following the job search loop, we allocate energy. Each

agent pays costs cf and cs for each of the friends he main-
tains and the e�ort he expends in searching for jobs. He
also pays an additional energy cost cmin in each period. If
agent i is employed he is paid a wage wi that corresponds
to the job he holds. Each period agents collect the di�er-
ence between costs paid and wages received in an energy
reserve, ei, that is updated according to Equation 1.
If ei is greater than the threshold � the agent repro-

duces by producing a clone with identical strategies and
social network. If ei is less than 0 the agent dies. When
agent i replicates a new agent j, she replicates her cur-
rent strategies and social network as well: sj(t) = si(t)
and Fj(t) = Fi(t). The energy of agent i is split equally
between i and j: ei(t + 1) = ej(t + 1) = ei(t)=2. When
an agent dies all incoming edges are deleted. All outgoing
edges are replaced as follows: if agent i dies, and agent i
has an outgoing edge to agent k, a new edge is created from
a randomly chosen agent h to agent k that replaces edge
(k; i). Replacing these edges keeps the number of incoming
edges constant for all surviving members of the population.
If this was not done there would be a downward bias in the

number of edges for the population.
The �nal loop of each period of the simulation introduces

the variations and mutations necessary for the population
to evolve. We �re each agent with probability � in ev-
ery period. Firing agents provides an incentive for them
to maintain search even if employed. If agents were not
occasionally �red, the agents occupying jobs paying wages
greater than cmin would have no incentive to search for a
better job; they would live forever without further e�ort.
There are two sources of mutation that allow strategies of

individual agents to evolve. First, with probability �f each
agent gains or loses a friend in each period. If an agent i
loses a friend, a random incoming edge to agent i is deleted.
If agent i gains a friend, a random agent j is selected (as
long as j is not already a friend of i) and an edge (i; j) is
created. Second, a mutation to the search intensity of each
agent occurs. A random draw from the uniform distribu-
tion [��s;+�s] is added to the current search intensity si
for each agent i. The job search, wage, and mutation loops
are repeated for Z periods in each run of the simulation.

B. Measuring the Networks

We characterize our results using measures introduced
in the small-world networks literature [11], [13], [14]. We
measure the global structure of a graph using the diameter
or path length, L. The path length is the average of the
shortest path between all pairs of vertices in the graph,
i.e. the average number of edges that must be traveled
along the shortest path between all pairs of vertices; L =
1

P

PP

p=1 Lp where P = N (N � 1) (excluding paths from a
node to itself) is the number of pairs of nodes in the graph;
p indexes each individual pair and Lp measures the distance
between each individual pair p. Our algorithm does not
guarantee that an evolved graph will be fully connected.
Therefore there may be some pairs of nodes for which no
path exits, i.e., Lp = 1. To accommodate for a non-
connected graph we actually use the following alternative
de�nition of diameter [15]:

L =

 
1

P

PX
p=1

L�1p

!
�1

: (2)

The measured path length of a social network will help us
quantify the ability to transfer information across the net-
work. A short path length implies that information ows
easily (e�ciently) in the network. The longer the path
length, the more di�cult it is for agents to �nd out about
jobs.
To quantify the local structure of a graph, de�ne a clus-

tering coe�cient, C, as follows: if agent i has fi adjacent
neighbors in the social graph, then this neighborhood de-
�nes a subgraph with at most fi(fi � 1) edges. Ci is the
fraction of these edges that exist in the neighborhood of i
and C is the average Ci for all i:

C =
1

N

NX
i=1

Ci: (3)
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Essentially C is the likelihood that agents j and k are con-
nected given that each is connected to i. It therefore mea-
sures the social \cliquishness" of the graph. We measure
average clustering, C, average search intensity, number of
friends, and population size each period. We measure av-
erage path length, L, at the end of every run.2

We normalize our results using random graphs. Random
graphs provide us with an approximation to the theoreti-
cal lower bound for minimal path length (see [13] p. 501).
In addition, random graphs contain minimal structure at
the local level. Since all edges are equally likely to be con-
nected, a random graph provides a lower bound on the
clustering of a graph. Therefore, random graphs represent
the natural choice as a benchmark. If the statistics from
the evolved graph are similar to the random graph we infer
that the evolved graph is random in nature. Note that all
edges, except for those created through selective reproduc-
tion, are created at random. Therefore any deviation from
randomness in the evolved graph indicates an evolutionary
selection toward the characteristics of the graph observed.
When each simulation is complete we create a set of G

random graphs as follows: we create a graph g with the
same number of nodes and edges as in the evolved graph.
We randomly choose two nodes, i, j, for each edge and con-
nect them thereby creating edge (i; j). When we have done
this for every edge we measure average path length, Lrandg ,

and clustering, Crand
g , for the randomly created graph ac-

cording to Equations 2 and 3. We average these quantities
over the G random graphs and then normalize each evolved
graph by the corresponding random diameter and cluster-
ing coe�cient. We repeat this process for each run r of
the simulation. Finally, we average the ratios over R runs
using a given set of parameters, to obtain the normalized
ratios:3

Lavg =
1

R

RX
r=1

1

G

GX
g=1

Lr
Lrandg;r

(4)

Cavg =
1

R

RX
r=1

1

G

GX
g=1

Cr
Crand
g;r

: (5)

III. Results

We obtain the results from a set of 10 simulations with
the parameters shown in Table I. We randomly seed each
simulation and present results averaged over the simula-
tions.

A. Small-World E�ect

In a local selection evolutionary algorithm, population
size measures the e�ciency with which agents use energy.
In our model if agents are e�cient at �nding jobs and trans-
ferring information between individuals the population will

2MeasuringL is very expensive in terms of computation time. Mea-
suring L for a graph with 50 nodes and an average of 5 edges per node
takes approximately 2 minutes on a 400MHz PII.
3For the results reported below G = 10 and R = 10. Ten observa-

tions on each of these parameters was su�cient to provide statistically
signi�cant results concerning the graph statistics.

TABLE I

Parameters for Base Simulations

Parameter Value
�f 0.001
�s 0.001
� 0.02
s0 0.01
f0 2
cs 1
cf 1/50
cmin 0.30
N0 50
� 10
Z 200
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Fig. 2. Evolution of population size

be high. Figure 2 shows the average population size over
the 10 runs. Note the large increase in population between
the �rst and last periods. The population begins with 50
agents but the initial randomly assigned search strategies
are poor and the population drops o� slightly to around
43 agents after about 12 periods. The agents then begin
developing better job search strategies and the population
quickly increases to a high of approximately 75 agents be-
fore settling to a stable population just above 70 agents.

Regarding the strategies used to accomplish the popula-
tion increase, the agents have increased both friends and
direct search with respect to their initial values. In the ini-
tial period each agent had 2 friends. The agents now have
an average of 2.22 friends.4 Direct search has increased
from .0100 in the �rst period to an average of .0114 at the
end of the simulation, but this change is not statistically
signi�cant for most runs. Interestingly, the large popula-
tion increase has occurred for relatively small changes in
number of friends and intensity of search. A larger change,
however, has taken place in the topology of the evolved net-
works. Let us �rst take a qualitative look at such change.

4All runs are signi�cantly di�erent from the starting value of 2 at
the 99% con�dence level.
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Fig. 3. Topology of one of the 10 evolved networks (right) and of
a random network with the same number of nodes and edges
(left). To draw these graphs we start with a random agent and
iteratively pick a neighbor with a greedy procedure. For each
node i we �nd the agent with the most similar social network by
maximizing a score, over agents j not previously placed on the
graph, based on the overlap between friends of i and friends, and
friends of friends, of j. We repeat the process until all nodes are
placed on the circle. If an agent selected has no friends in common
with any remaining agent, a new random agent is selected.

Figure 3 illustrates the clustering of friends produced by the
adaptive process. The problem of placing nodes on a plane
to minimize edge crossing is NP-complete [16]. Therefore,
for more clustered graphs, the greedy procedure used to
draw the graphs will result in fewer \long" edges (across
the middle of the network) and in denser connections at the
periphery. Upon comparing the two graphs, the di�erence
in local structure is evident. Many more of the agents in
the evolved graph are friends of their neighbors and also
friends with the friends of their friends. The agents have
organized a highly clustered population.

As discussed above, clustered networks generally are
poor at transferring information because the average path
length between nodes tends to be long. However, Watts
and Strogatz [11], [13] have quanti�ed how clustered net-
works can transfer information e�ciently. Starting with a
\regular" graph (say, a grid) they replace existing edges
of the graph with random edges and �nd that the char-
acteristic path length of the graph decreases to that of a
random graph quickly. The clustering of the graph falls
as well, but not nearly as quickly as the path length. A
small-world graph is then roughly de�ned as a graph which
exhibits a path length close to that of a random network
but with clustering close to that of a regular network [13].
Graphs of �lm appearances of actors (\Kevin Bacon num-
bers"), power grids, and neural networks are used as real
world examples to show that small-world networks exist in
reality [13], [17].

By gauging the diameter and clustering measures of our
evolved network with respect to random networks, we are
able to quantitatively compare the evolved structure to the
de�nition of a small-world network using Cavg and Lavg.
Results from the ten simulations with the parameters above
yield Cavg = 3:57 and Lavg = 1:44 after 200 periods; there-
fore our graphs resemble a small-world graph (Cavg � 1
and Lavg � 1.) From this result we infer that clustered so-
cial networks still transfer job information e�ciently. The

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100

Cs/Cf

Cavg
Lavg

Fig. 4. Small-world e�ect. A t-test reveals that while Lavg is in-
sensitive to the strategy cost ratio, Cavg satis�es the small-world
de�nition only in the middle region. A t-test on Cavg at the mid-
dle and end points of the region reveals statistically signi�cant
di�erences between the sets of simulations (t-statistic=2.065 be-
tween cs=cf = 50 and cs=cf = 5, and t-statistic=2.022 between
cs=cf = 50 and cs=cf = 100).

local structure observed in social networks does not pre-
clude the e�cient transfer of information.
As a sensitivity analysis of the small-world e�ect we ex-

amine a range of strategy costs. Leaving cs = 1 we vary cf .
The values for Cavg and Lavg at the end end of the runs are
plotted vs cs=cf in Figure 4. The amount of local struc-
ture depends on the relative costs of friends and direct job
search. For low cf , many friends are easy to maintain and
therefore the structure does not matter as much. For re-
ally high cf , friends are too expensive to maintain and the
local structure disappears. But in the critical region of in-
termediate cost ratios we observe a consistent small-world
phenomenon due to emergent local structure.

B. Second Order Evolution

In the previous subsection we observed that agents are
able to produce e�cient networks in a short period of time.
As a further test of the robustness of the e�ciency found
above we increase the length of the simulations to 5,000
periods. Again we run 10 simulations and obtain results
from averages over the runs. Figure 5 displays the average
population size. After reaching a maximum around the
150th period, the population size steadily decreases until
reaching an equilibrium level of about 63 agents around
period 3,500. As we stated above, population size measures
how e�ciently a system uses energy. Therefore it appears
that the agents in the population have lost some of the
e�ciency gained early in the simulation.
Figure 6 displays the average number of friends over the

same period. Average friends increase dramatically and the
increase corresponds strongly to the decrease in population
and e�ciency loss. The correlation between average friends
and population size is -0.896.
To quantify the degree of e�ciency loss we compare the

evolution of the population to that of a population with
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Fig. 5. Second-order evolution of population size. The population
dynamics of a random population is also plotted for comparison.
A t-test con�rms that the two population sizes are signi�cantly
di�erent at the height of the evolved population (99% con�dence
level, t-statistic=4.386).
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Fig. 6. Evolution of the number of friends in the population. The
increase in the number of friends between periods 0 and 5000 is
statistically signi�cant (t-statistic=9.639).

random selection. Random selection is accomplished using
the algorithm of Figure 1 with two variations: �rst, wages
are assigned randomly; each period every agent is assigned
the wage of a randomly chosen agent from the population
regardless of his job status. Second, costs are �xed for
all agents regardless of strategy choice. For comparison to
the original simulation we choose the �xed cost to be the
average (total) cost paid by the agents in the last period
of the evolved simulation. Figure 5 also plots the random
selection population size over 5,000 periods.

As can be seen in the �gure, the size of the evolved pop-
ulation is much larger than the size of the population with
random selection at the height of its early peak. The aver-
age population at period 200 is approximately 72.4 (stan-
dard error 2.49) for the evolved agents and the average pop-
ulation for the randomly selected agents is 58.6 (1.93). But
the evolved population size steadily decreases over time un-
til converging to a population level close to that of random

selection. The decrease to the level of random selection
implies that the population has lost all of the e�ciency
gain from the structure of the network observed early in
its evolution.
In order to better understand the loss of e�ciency we

explore the individual �tness of agents. Following ecologi-
cal models we can measure individual �tness of agents by
the age of agents in the population [7]. The average age of
the agents in the 200th and 5,000th periods of the simula-
tion are 57.4 and 69.9 periods, respectively.5 The average
agent in the 5,000th period is twenty-percent older than
the average agent in the 200th period. While the evolved
strategy of the agents in the 200th period is more e�cient
for the population (highest observed population size), indi-
vidual agents can do better (live longer) by increasing the
number of friends maintained.
Increasing the number of friends serves two purposes:

�rst, an employed agent with many friends �nds out about
better jobs with a higher likelihood. In this sense friends
provide an opportunity for upward mobility. Second, if an
agent becomes unemployed his expected duration of unem-
ployment is lower if he has more friends. Friends provide
insurance in the case of job loss. But each of these advan-
tages is o�set by the higher maintenance cost that must be
paid to keep many friends.
In addition the search strategy chosen depends on the

strategies chosen by other members of the population. For
instance having many friends does little good if everyone
else in the population never searches. In this case the
friends of an agent never learn about any jobs and thereby
cannot provide her with any job information. Also, since
the number of jobs in the economy is �xed and only one
agent can occupy each job, agents must compete with each
other over the jobs. If agent j �nds out about a job be-
fore agent i does, agent i cannot get that job until agent
j vacates it. Agents must choose a combination of search
strategies that do well given the search strategies of other
population members. Therefore it may be advantageous to
try to have more friends than the status quo members of
the population, as long as it is not too costly. Other mem-
bers of the population may then respond to your strategy
by increasing their number of friends. The dynamic results
in an \arms race" for social networks where everyone picks
a strategy that is best for the individual at the expense of
the population.
Therefore the observed phenomenon is similar to a so-

cial dilemma in the spirit of the prisoner's dilemma and
the tragedy of the commons. Here we have a resource in
�xed supply, jobs, that provides the population with en-
ergy. Agents do not choose the e�cient strategy as a col-
lective because it is not a stable equilibrium. Instead they
maximize individual �tness; a strategy that bene�ts the
individual but hurts global e�ciency.
To con�rm the above interpretation we perform two �nal

experiments. In the �rst, we decrease the number of friends

5A t-test con�rms that the average age at the 200th period is sig-
ni�cantly di�erent from the average age at the 5,000th period (99%
con�dence, t-statistic=3.135).
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Fig. 7. Population dynamics in two control experiments. In one
experiment, two friends are taken from each agent at period 3,000
and 4,000. The population size increases following each period. In
the second experiment, the agents are only allowed a maximum
of three friends. Capping the number of friends increases the
long run population size and cures the social dilemma of over-
competition observed previously.

held by every agent in the population by two at the 3,000th
and 4,000th periods. As can be seen in Figure 7 the average
population size increases by about 5 agents directly follow-
ing the removal of friends. However, shortly after the new
peak, the population size follows the previously observed
decrease.

In the second experiment we place a restriction on agents
that does not allow them to have more than three friends.
As seen before in Figure 2, the population quickly increases
to about 75 agents. Following the peak the population size
decreases somewhat, as shown in Figure 7, but reaches a
steady state around 70 agents. In contrast to previous
simulations the population size does not decrease further
and remains around 70 agents for the duration of the sim-
ulation. Limiting the over competition (over networking)
cures the social dilemma.

A �nal note on second order evolution can be made upon
viewing Figure 8, which plots Cavg and Lavg against cs=cf
for the networks observed at the 5,000th period. Observe
that the structure of the resulting networks remains similar
to that of the shorter runs. As observed previously in Fig-
ure 4, the path length ratio remains constant between 1.3
and 1.5 for all cost ratios. The clustering ratio increases
with the cost of friends; however, it takes higher cf to gen-
erate the same magnitude increase. Since the agents have
increased the number of friends they hold, each individual
friend is less important. Therefore it takes a larger de-
crease in the number of friends (caused by more expensive
friends) to generate the small-world e�ect.

IV. Policy Discussion

One of the leading topics in the discussion of referral
based hiring has been the e�ect on disadvantaged social
groups [18], [5], [3], [1], [19]. The research makes two main
points about inequality in regard to referral based hiring:

1
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Fig. 8. Small-world e�ect at period 5,000. As above we compare the
di�erence in Cavg across the cost ratio levels by performing a t-
test. While the di�erence between cs=cf = 50 and cs=cf = 15 is
statistically signi�cant (t-statistic=2.630), the di�erence between
cs=cf = 50 and cs=cf = 100 is not (t-statistic=0.211).

�rst, social segregation may lead to wage inequality if re-
ferral based hiring is prevalent. When many jobs are �lled
through referral, individuals in poor social networks may
have fewer opportunities to apply for jobs if �rms do not
also use additional search methods such as advertising or
other forms of job posting. In this fashion referral based
hiring limits the job opportunities available to individuals
outside of the \old-boys network."
Second, an individual with su�ciently better connections

may expect more job o�ers than someone with worse con-
nections. The increase in the number of o�ers has the
potential to increase the wages of a better connected in-
dividual by improving his bargaining position. For well-
connected individuals \it's not what you know but who
you know" [5].
One policy approach that a�ects the potential inequality

created by referral based hiring is a�rmative action. With
regard to our model, a�rmative action could help create
equality in two ways. First, it may be thought of as a way
to limit over-competition for friendship networks and to
cap the social dilemma problem. As observed at the end
of the previous section, limiting the amount of networking
increases the e�ciency of the job market.
A second way that a�rmative action may be useful is

by limiting unintentional discrimination on the part of em-
ployers. For instance, if the percent of white workers in
a �rm is high and social networks are strati�ed by race,
applicants to this �rm who are referred are likely to be
white as well.6 If employers commonly hire by referral
and get few minority applicants, the likelihood a minor-
ity is hired decreases even if the employer treats minorities
equally with regard to the hiring decision. In this way em-
ployers may unintentionally discriminate against minorities

6For example Mouw (see [19] p. 89) �nds that �rms who employ
few black workers (.05%-10% of the workforce being black) are 75%
less likely to hire a black worker if they hire through referral instead
of using a newspaper advertisement.
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without any ill-will. A�rmative action can remedy the
problem by encouraging socially segregated �rms to hire
workers by means other than referral and thereby increase
the diversity of applicants.

Another issue raised in our model is in the relative costs
of the various means to search for jobs. The advent of
the Internet has certainly changed the ways that individ-
uals maintain friendships. Electronic mail, for instance,
has made it cheaper to keep in contact with friends, espe-
cially periphery friends that one does not see often. What
implication does this have for our results above?

As friendships get cheaper to maintain, agents spend a
larger portion of their time networking. Depending on the
degree of integration in a society, our model predicts that
poorly networked people may fair better or worse. If a pop-
ulation remains highly segregated as the use of networking
increases, poorly-connected people are shut out from an
increasingly important method to access jobs. But, in our
model we also observe that as networking increases the
structure of the social networks becomes less local. The
social networks are wider and the amount of clustering rel-
ative to a random graph decreases. Therefore it may be
easier for a poorly connected person to break into the \job
loop."

For real labor markets the question becomes \which ef-
fect will dominate?" Will the less local structure of social
networks allow poorly connected individuals to expand into
well connected social networks? Or will inexpensive friend-
ship maintenance cause extreme over-competition with re-
spect to individuals in well connected networks and thereby
increase inequality? If networks become so cheap that
everyone knows everyone else (the network is su�ciently
dense), disadvantaged individuals will prosper along with
advantaged individuals. But there is a problem: if the real
reason for hiring by referral is decreasing uncertainty about
the quality of a new hire, it is not likely that an outsider to
the \old-boys network" will be able to use a connection to
a distant person not known well. And, an employer only
gains con�dence through referral if the referee knows the
applicant well. With this in mind, individuals newly con-
nected to the \old-boys network" may not be able to pro�t
from a better network position until they become well es-
tablished in the new network. Therefore an increase in the
ease of maintaining friendships has unclear implications for
creating equality.

As a �nal policy consideration we may think of a third
job search strategy that may be added to our model: edu-
cation. While education is not directly a search strategy it
is important (or required) for getting many jobs. If we in-
corporate education as a choice variable that helps agents
get jobs it is likely that we will still get over-networking
given a su�ciently low cost of maintaining friends. If this
is true the high dependence on friends for attaining jobs
may reduce the value of education in a society | poten-
tially an even worse social dilemma.

Another possibility with respect to education more di-
rectly concerns poorly connected people. If social networks
become increasingly important in �nding jobs even a well

educated person may have di�culty �nding employment if
he is not well connected. In turn this may a�ect his educa-
tion choice in two ways: �rst, if he is not well connected his
value of education may be lower than another person with
better connections. This is because he may not be able to
capitalize on the education he holds. Second, if networks
are important in �nding jobs, a person has an incentive to
choose the occupation for which he has the best network.
If all of his friends have low education jobs it may be op-
timal to choose the same low education profession because
it may maximize the likelihood of becoming employed. If
so, individuals may encounter poverty-traps where low ed-
ucation choices are reinforced by the other members of a
population group.

V. Conclusion

We used an evolutionary model with endogenous �tness
to study the e�ciency of information transfer in a labor
market setting. In our model small-world referral networks
emerge as an e�cient means to transfer information in the
labor market. We observe a signi�cant amount of local
structure in the evolved networks but the local structure
does not preclude the e�cient transfer of information as
measured by the average path length. As evolution pro-
gresses we observe a second characteristic: the population
loses e�ciency over time as indicated by a decrease in pop-
ulation size. Investigation reveals that over competition
for social networks cause the e�ciency loss. The result is
reminiscent of traditional social dilemmas such as the pris-
oner's dilemma, in that agents maximize individual (local)
e�ciency at the expense of population (global) e�ciency.

The predictions of our model allow us to make some con-
siderations on the inequality issues related to the preva-
lence of referral based hiring methods and the structure
of social networks. Additional research directly related to
these policy areas is possible within our model with minor
modi�cations. Of particular interest may be the e�ect of
referral based hiring on education choices. By adding edu-
cation as a choice variable to our model we can view how
the education a person chooses is a�ected by her referral
network. This approach would add to considerations of
peer e�ects in the attainment of education.

Another area we hope to consider is the e�ect of referral
based hiring on social segregation. Individuals may have
incentives to open or close a social network for the purposes
of gaining jobs. As an example, if a person has many un-
employed friends he would like to meet a group of employed
people. But, since his friends are unemployed he is of less
value than a better connected person as a job contact. Peo-
ple in poorly connected groups would like to join a better
connected group but the people in this group would like to
remain exclusive to lessen competition for jobs. Studying
this dynamic would add to our understanding of the e�ect
that labor markets and �nancial prosperity have on e�orts
to better integrate society.
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