
Latency-dependent �tness in evolutionary multithreaded Web agents

Melania Degeratu

Computer Science Department
Columbia University
New York, NY 10027

melania@cs.columbia.edu

Gautam Pant and Filippo Menczer

Management Sciences Department
University of Iowa
Iowa City, IA 52242

fgautam-pant,filippo-menczerg@uiowa.edu

Abstract

The World Wide Web creates opportunities
for search systems using adaptive distributed
agents. This paper presents a threaded im-
plementation of InfoSpiders, a client-based
system that uses an evolving population of
intelligent agents to browse the Web at query
time. We consider di�erent �tness functions
based on network resource consumption and
show that taxing agents in proportion to
latency results in better e�ciency without
penalties in the quality of the retrieved doc-
uments. The tool is available to the public as
a Java applet.

1 Introduction

Search engines make use of the state of the art in infor-
mation retrieval in conjunction with automated pro-
grams, called crawlers, that continuously visit large
parts of the Web in a blind, exhaustive fashion. The
crawled pages are stored in a static index mapping ev-
ery term from a controlled vocabulary onto the collec-
tion of URLs containing that term. The index is used
at query time to return the sets of URLs containing
the terms in users' queries.

The Web is dynamic, with pages being added, deleted,
updated, moved, and linked to each other in an un-
structured manner. It is also very large and growing
at a very fast pace [2]. Therefore the set of relevant
pages for any given query is also highly dynamic, lead-
ing to a scalability problem | the assumption of an
accurate and complete static image of the Web breaks
down with its rate of change. As search engines fail
to satisfy the user's need for complete and recently
updated information, it becomes highly desirable to
improve the coverage and recency of search engines.

One approach to address the coverage issue is the
use of meta-search techniques to combine relevant sets
from multiple search engines. Meta-search has been
shown to improve recall compared to single \tradi-
tional" search engines [1]. Yet even meta-search en-
gines cannot locate recent pages unknown to the indi-
vidual engines whose results are combined. Therefore
we suggest a more radical solution to the scalability
problem: complementing index-based search engines
with intelligent search agents at the user's end.

This paper describes an evolutionary multi-agent sys-
tem designed to browse adaptively on behalf of the
user to complement search engines. We discuss the
implementation of such agents in Java and the design
of appropriate �tness functions for this application.

2 Sequential InfoSpiders

InfoSpiders [3] is a multi-agent system for online, dy-
namic Web search. Each agent checks its information
neighborhood (de�ned by hyperlinks) looking for new
documents relevant to the user's query and having lit-
tle or no interaction with other agents. InfoSpiders are
able to display an intelligent behavior by evaluating
the relevance of the document content with respect to
the users query, and by reasoning autonomously about
future actions that mimic the browsing habits of hu-
man users. Adaptation occurs at both individual and
population levels, by evolutionary and reinforcement
learning. The goal is to maintain diversity at a global
level, trying to achieve a good coverage of all aspects
related to the query, while capturing the relevant fea-
tures of each agent's local information environment.

InfoSpiders employ an evolutionary computation ap-
proach based on local selection [4]. An agent's \en-
ergy," related to the relevance of the pages visited by
that agent, is accumulated over time. We want to
reward agents that �nd relevant pages �rst, and not



agents that visit those pages subsequently. For this we
employ a caching system, and the interaction among
individuals is limited to sharing access to this cache.
Selection occurs in a distributed fashion, when the en-
ergy level of an agent reaches a certain �xed threshold.
This selection maintains diversity in a way similarwith
�tness sharing without a global selection bottleneck.

InfoSpiders rely on traditional search engines to ob-
tain a set of starting URLs pointing to pages suppos-
edly relevant to the query submitted by the user. The
user also provides a maximum number of pages the
population of agents may visit. The starting docu-
ments are prefetched, and each agent is \positioned"
at one of these documents and given an initial amount
of energy. An agent estimates each outgoing link by
looking at the occurrence of keywords in the vicinity
of the link. The agent then uses these link relevance
estimates to choose the next document to visit.

After a document has been visited, the agent needs to
update its energy. Energy is used to move and survive,
so the agent will be rewarded with energy based on the
estimated value of the visited documents. Since the en-
ergy dynamics of an agent determine its reproductive
rate, determining an appropriate �tness function to
map the quality and cost of visited pages into energy
is crucial for the success of the system. Alternative
�tness functions are discussed in the next sections.

The adaptive representation of InfoSpiders roughly
consists of a list of keywords, initialized with the query
terms, and of a feed-forward neural net. The keywords
represent an agent's opinion of what terms best dis-
criminate documents relevant to the user from the rest.
The neural net is used to estimate links.

An agent can modify its behavior during its life by
comparing the relevance of the current document (as
evaluated once the document is visited) with the esti-
mation that was made from the previous page, prior
to following the link that led to the current one. Re-
inforcement or prediction learning can be employed to
achieve this goal. The relevance is computed by an
agent as a similarity measure between its keywords
and the current document. The learning scheme is
completely unsupervised.

InfoSpiders adapt not only by learning neural net
weights, but also by evolving keyword representations.
If an agent accumulates enough energy, it clones a new
agent in the location (page) where it is currently sit-
uated. At reproduction, the keyword vector of the
o�spring is mutated by replacing the least useful (dis-
criminating) term with a term that appears better cor-
related with relevance. The two agents can continue

InfoSpiders(query, INIT_POP, MAX_PAGES) {
starting_urls := search_engine(query, INIT_POP);
for agent (1..INIT_POP) {

initialize(agent, query, one_of(starting_urls));
agent.energy := THETA / 2;

}
foreach agent {

while (alive & (visited < MAX_PAGES)) {
pick_link_from_current_document(agent);
p := fetch_new_page(agent);

lock(cache_semaphore);
update(cache);
unlock(cache_semaphore);
agent.energy += fitness(p);

learn(agent);
if (agent.energy > THETA) {

offspring := mutate(clone(agent));
offspring.energy := agent.energy / 2;
agent.energy -= offspring.energy;

}
elseif (agent.energy < 0) death(agent);

}
}

}

Figure 1: Pseudocode of multithreaded InfoSpiders.

the search independently of each other. If an agent
runs out of energy, it is destroyed. This way, agents are
allocated to promising areas of the information space.

The output of the algorithm is a 
ux of links to docu-
ments, ranked by estimated relevance. The algorithm
stops when the population goes extinct for lack of rele-
vant information, visits the maximumnumber of docu-
ments, or is terminated by the user. Additional details
on the algorithm can be found elsewhere [3].

3 Multithreaded MySpiders

Due to the parallel nature of the InfoSpiders algorithm,
mutithreading can be expected to provide better uti-
lization of resources as compared to a single thread
(sequential) implementation. Since Java has built-in
support for threads and allows for classes to be loaded
at runtime over the Web, we implemented a multi-
threaded version of InfoSpiders as a Java applet.

The multithreaded implementation allows one agent
thread to use the network connection to retrieve docu-
ments, while other agents can use the CPU, or access
cache information on the local disk. Figure 1 illus-
trates the multithreaded InfoSpiders applet. The only
addition to the algorithm described in the previous
section is a lock mechanism to allow concurrent access
to the shared cache.

Unfortunately, there are other issues that weaken the
Java choice, the most important of which are the low
speed of execution of Java byte code and the need to
provide a mechanism for granting privileges to the ap-
plet. In fact, to be able to open network connections to
hosts other than the one from where the applet itself



Figure 2: MySpiders applet screenshot.

was downloaded, and to access the local disk for cache
I/O operations, the applet has to bypass the browser's
security manager. One way to accomplish this task is
to digitally sign the applet code to request additional
privileges from the user. The problem was �rst ad-
dressed by using the Netscape Signing Tool, but this
solution narrowed the portability of the application.
Therefore, as an alternative solution we used Java's
Signing Tool. The digital signatures created this way
can be veri�ed using a Java plug-in. The problem here
is that the plug-in's veri�cation procedure has plat-
form dependencies. A di�erent way for the applet to
acquire the required privileges is the use of policy �les.
For this purpose, in addition to the plug-in, the user
needs to save a policy �le under platform speci�c di-
rectories. The current system uses a hybrid of the two
technologies mentioned above | signed applets and
policy �les | to support multiple platforms and pro-
vide ease of use. Through the development experience,
the team has learned that applet portability is not as
easy as it was meant to be.

A simpli�ed version of InfoSpiders, called MySpi-
ders, was implemented as a multithreaded Java
applet and is deployed on a public Web server
(http://myspiders.biz.uiowa.edu). Figure 2
shows the user interface of the MySpiders applet in
the course of a query search. MySpiders hides from
the user many parameters in order to keep the user
interface as simple as possible.

Once the start button is pressed, an automated brows-
ing process is initiated. The user can scan through a
ranked list of relevant pages found up to that time.
The relevant URLs are preceded by a number that rep-
resents the agent (or spider) that found the page. If
the user likes a page, clicking on the spider that found
it provides a list of other pages found by that spider.
The user has the choice to stop the search process at
any time if she has already found the desired results,
or if the process is taking too long.

4 Evaluation of Fitness Functions

A good choice of �tness function to map visited pages
into energy income is essential for the MySpiders ap-
plet, due to its interactive nature. Users will only use
tools that are both e�ective and e�cient. For this rea-
son we consider two components in our �tness func-
tions: a bene�t to re
ect the estimated relevance of
pages with respect to the user query, and a cost to
account for the network resources used to download
pages. For the bene�t component, previous experi-
ments have shown that the frequency of query terms
in a page is an appropriate measure [3]. For the cost
component, we have used in earlier implementations a
simple model that assumes equal costs for all pages.
Now we want to compare this model with a latency-
dependent scheme in which agents are charged more
for visiting large pages and slow servers.

For the constant cost model we want the population to
visit at least MAX PAGES new documents before running
out of its initial energy, therefore we set

costconst =
INIT POP � THETA

2 � MAX PAGES
:

For the latency dependent cost model, we compute

costlatency(p) = 2 � costconst �
time(p)

TIMEOUT

where time(p) is the real time in which the page is
downloaded and TIMEOUT is the timeout parameter for
the socket connection. Note that the expected value
of the two cost models is the same under a uniform
latency assumption.

Figure 3 plots the speedup obtained for di�erent sizes
of the initial population and for the constant and
latency-dependent �tness functions. These prelimi-
nary results are very encouraging, with the speedup
reaching values as high as 15-fold for larger popula-
tions. Furthermore, the speedup for large populations
are approximately 50% higher when the cost function
is latency-dependent.

This result leads to questioning the quality of the doc-
uments retrieved during these runs: Does the more
e�cient concurrent implementation bias the search to-
ward pages and servers that | while faster | contain
less relevant information? Figure 4 shows the rates
at which new relevant pages are visited, plotted ver-
sus the size of the initial populations for constant and
latency-dependent costs. Again we observe a better
performance for the latency-dependent �tness func-
tion, suggesting that it a�ords better e�ciency with-
out a penalty in the quality of the results.



0

2

4

6

8

10

12

14

16

4 8 16 32

Sp
ee

du
p

Number of agents

Excite
MetaCrawler

AltaVista

0

2

4

6

8

10

12

14

16

4 8 16 32

Sp
ee

du
p

Number of agents

Excite
MetaCrawler

AltaVista

Figure 3: Speedup acquired for constant (left) and latency-dependent (right) cost. In this experiment we use a
single query (\neural networks") and 3 search engines to get the starting points.

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 16 32

N
ew

 d
oc

um
en

ts
 / 

se
c

Number of agents

Excite
MetaCrawler

AltaVista

0

0.05

0.1

0.15

0.2

0.25

0.3

4 8 16 32

N
ew

 d
oc

um
en

ts
 / 

se
c

Number of agents

Excite
MetaCrawler

AltaVista

Figure 4: Relevant new pages retrieved per unit time, for constant (left) and latency-dependent (right) �tness
functions. A document is assumed to be relevant if its similarity to the query is above a 2% threshold.

5 Conclusions

We have described a multithreaded implementation of
the InfoSpiders system in which evolutionary informa-
tion agents can browse the Web concurrently. We ex-
perimented with two �tness functions and found that
taxing agents in proportion to their usage of network
resources results in better e�ciency without apparent
penalties in the quality of the retrieved documents.
The multithreaded approach has proven very e�cient,
achieving speedups of an order of magnitude. The
latency-dependent �tness model has been incorporated
into the public MySpiders applet.

Our preliminary experiments suggest that comple-
menting static search with an dynamic component has
a potential to improve the quality of the pages pre-
sented to the user, and that evolutionary multi-agent
systems can perform this task satisfactorily.

However, to fully understand the bene�ts of using In-
foSpiders on top of static search results, the system has

to undergo more extensive tests in conjunction with
performance assessments from users. We also intend
to test further variations of the �tness function, consid-
ering factors such as document popularity in addition
to latency and query similarity.

References

[1] S. Lawrence and C. Giles. Context and page analysis
for improved web search. IEEE Internet Computing,
2(4):38{46, 1998.

[2] S. Lawrence and C. Giles. Accessibility of information
on the web. Nature, 400:107{109, 1999.

[3] F. Menczer and R. Belew. Adaptive retrieval agents:
Internalizing local context and scaling up to the web.
Machine Learning, 39(2/3):203{242, 2000.

[4] F. Menczer, M. Degeratu, and W. Street. E�cient
and scalable pareto optimization by evolutionary lo-
cal selection algorithms. Evolutionary Computation,
8(2):223{247, 2000.


