
ARTICLE IN PRESS

Complementing search engines with online web mining agents

Filippo Menczer

Department of Management Sciences, The University of Iowa, Iowa City, IA 52242, USA

Abstract

While search engines have become the major decision support tools for the Internet, there is a growing disparity between the

image of the World Wide Web stored in search engine repositories and the actual dynamic, distributed nature of Web data. We

propose to attack this problem using an adaptive population of intelligent agents mining the Web online at query time. We

discuss the benefits and shortcomings of using dynamic search strategies versus the traditional static methods in which search

and retrieval are disjoint. This paper presents a public Web intelligence tool called MySpiders, a threaded multiagent system

designed for information discovery. The performance of the system is evaluated by comparing its effectiveness in locating

recent, relevant documents with that of search engines. We present results suggesting that augmenting search engines with

adaptive populations of intelligent search agents can lead to a significant competitive advantage. We also discuss some of the

challenges of evaluating such a system on current Web data, introduce three novel metrics for this purpose, and outline some of

the lessons learned in the process.

D 2002 Elsevier Science B.V. All rights reserved.

Keywords: Web mining; Search engines; Web intelligence; InfoSpiders; MySpiders; Evaluation metrics; Estimated recency; Precision; Recall

1. Introduction

With the increasing amount of information avail-

able online, the World Wide Web has rapidly become

the main source of competitive intelligence for busi-

nesses, and consequently search engines represent

invaluable decision support tools. However, disci-

plines like information retrieval and machine learning

are facing serious difficulties in dealing with the Web

in a scalable way. The search technologies employed

on the Web are faced with several features of this

environment that make the task of indexing the Web a

formidable challenge. As of February 1999, the size of

the publicly indexable Web was reported to be over

800 million pages [17], more than double that

reported only a year earlier [15] and growing at a

very fast pace—Google alone reports over 1.6 billion

URLs indexed at the time of this writing. Further-

more, the Web has a dynamic nature, with pages being

added, deleted, moved, updated, or linked to each

other at a fast rate and in an unprincipled manner. It is

also heterogeneous, without imposed restrictions on

document content, language, style, or format.

Search engines are powered by state-of-the-art

indexing algorithms, which make use of automated

programs, called robots or crawlers, to continuously

visit large parts of the Web in an exhaustive fashion.

The pages accessed undergo some performance-

enhancing steps, such as the removal of ‘‘noise’’ words

(too frequent to be representative), the conflation of

terms via stemming and/or the use of thesauri, and the

use of different weighting schemes to represent in-

dexed pages. Then, the pages are stored in inverted

index databases. Such indexes map every term from a

0167-9236/02/$ - see front matter D 2002 Elsevier Science B.V. All rights reserved.

PII: S0167 -9236 (02)00106 -9

E-mail address: filippo-menczer@uiowa.edu (F. Menczer).

URL: http://dollar.biz.uiowa.edu/~fil.

www.elsevier.com/locate/dsw

Decision Support Systems 992 (2002) xxx–xxx

ARTICLE IN PRESS

controlled vocabulary onto the collection of URLs

containing that term, and are used at query time to

return the sets of URLs containing the terms in users’

queries.

The key idea of all search engines is that the index

built by a crawl of the Web can be used many times, so

that the cost of crawling and indexing is amortized over

the many queries that are answered by a search engine

by looking up the same static database. The two factors

that differentiate among distinct search engines are the

crawling and ranking algorithms. Crawling strategies

determine which documents are indexed and ulti-

mately affect the recall (fraction of relevant pages that

are retrieved) and the recency (fraction of retrieved

pages that are current) of a search engine. Ranking

algorithms determine how the documents matching a

query are sorted and ultimately affect the precision

(fraction of retrieved pages that are relevant) of a

search engine. For example, the recent success of the

Google search engine is generally attributed to its

ranking algorithm, which is based on weighted counts

of links pointing to pages rather than on lexical

similarity between pages and query [13].

While the indexing approach is ideal for static col-

lections of documents, in the case of the World Wide

Web, the sets of relevant pages draw one important

characteristic from their environment: they are highly

dynamic. The static snapshots of the Web captured in

search indexes, left to themselves, become less and less

accurate and complete. They need to be updated per-

iodically, by having the crawlers revisit the same docu-

ments to assess the changes that might have occurred

since the last visit—in addition to looking for new

URLs. Therefore, as any Web site administrator can

easily verify by inspecting server logs, search engine

crawlers impose a huge load on network resources,

even if this is amortized over multiple queries.

Search engine users are often faced with very large

hit lists, low recall, low precision, and low recency.

Despite increasing computing power and network

bandwidth, no search engine is able to index more

than 16% of the Web, and it takes a search engine an

average of 6 months to index a new document [17].

These problems are explained by the simple obser-

vation that the static ‘‘index snapshot’’ approach does

not scale with the growing size and rate of change of

the Web. This scalability issue is at the root of the

discrepancies between the current Web content and its

snapshots represented by search engines’ indexes.

Further, such discrepancies can only grow with the

size of the Web, diminishing the expected level of

performance of search engines and hindering their

effectiveness as decision support systems for compet-

itive intelligence (Web intelligence tools).

The scalability problem posed by the size and

dynamic nature of the Web may be addressed by

complementing index-based search engines with intel-

ligent search agents at the user’s end. In this paper, we

discuss a type of agent-based systems inspired by

ecological and artificial life models. Such agents can

browse online on behalf of the user, and evolve an

intelligent behavior that exploits the Web’s linkage

and textual cues [21,23].

Despite its huge size, the Web forms a small-world

network, characteristic of social and biological sys-

tems, in which any two documents on the Web are on

average 19 clicks away from each other [1]. This

result suggests that ‘‘smart’’ browsing agents that can

distinguish the relevant links inside the pages might

be able to find the desired information in a limited

time. By using this approach, the relative load of the

network may be switched from the blind crawlers

employed by search engines to intelligent browsing

agents that can reach beyond search engines and mine

for new, up-to-date information. Online agents search

only the current environment and therefore will not

return stale information, and will have a better chance

to improve the recency of the visited documents.

InfoSpiders [25,26] is the name of a multiagent

model for online, dynamic information mining on the

Web, which uses several artificial intelligence techni-

ques to adapt to the characteristics of its networked

information environment—heterogeneity, noise, de-

centralization, and dynamics. In this approach, each

agent navigates from page to page following hypertext

links, trying to locate new documents relevant to the

user’s query, having limited interactions with other

agents. Agents mimic the intelligent browsing behav-

ior of human users, being able to evaluate the relevance

of a document’s content with respect to the user’s

query, and to reason autonomously about future links

to be followed. In order to improve the performance of

the system, adaptation occurs at both individual and

population levels, by evolutionary and reinforcement

learning. The goal is to maintain diversity at a global

level, trying to achieve a good coverage of all different

F. Menczer / Decision Support Systems xx (2002) xxx–xxx2

ARTICLE IN PRESS

aspects related to the query, while capturing the rele-

vant features of the local information environment, i.e.,

the textual hints leading to relevant pages.

The idea of intelligent online crawlers such as

InfoSpiders is to complement search engines in order

to improve upon their precision, recall, and recency.

Unfortunately, assessing whether one is successful

with respect to this goal is a difficult task. Traditional

measures used to evaluate the performance of infor-

mation retrieval systems assume that (i) all systems

have global knowledge of the information space in the

form of an index, and (ii) the experimenter has

knowledge of the relevant set of documents for each

test query. Neither of these assumptions holds in the

present case. First, a query-driven crawler relies on a

search engine rather than building an independent

index—indeed, the pages crawled by the agents can

be indexed and added to the engine’s database, so that

the two approaches are cooperating for mutual benefit.

Second, nobody knows the real relevant sets for any

query because nobody has knowledge of the whole

Web. At best, we can know of a subset of the relevant

set, i.e., an incomplete set of pages judged to be

relevant by human experts. Given these difficulties,

we propose in this paper a set of empirical measures

aimed at approximating the performance of Web

mining agents. Using such measures, we rely on the

incomplete knowledge in existing search engines and

human-maintained directories to assess the value

added of query-driven crawlers with respect to con-

ventional search engines alone.

In the reminder of this paper, we first describe the

InfoSpiders model in detail, in Section 2. Then,

Section 3 presents the design and implementation of

MySpiders, a multithreaded Java applet based on

InfoSpiders that has been deployed on the Web. In

Section 4, we introduce three novel metrics designed

to enable the evaluation of intelligent online Web

mining agents and their capability to improve on the

performance of search engines, complementing them

in a scalable way. These metrics are then used to

analyze the results of crawling experiments conducted

to compare the quality and recency of pages retrieved

by MySpiders versus those retrieved by a major

commercial search engine. Section 5 discusses some

lessons learned through the deployment of MySpiders

and reviews related research. We conclude in Section 6

with a look into the future.

2. The InfoSpiders model

InfoSpiders are an evolutionary multiagent system

in which each agent in a population of peers adapts to

its local information environment by learning to

estimate the value of hyperlinks, while the population

as a whole attempts to cover all promising areas

through selective reproduction. Fig. 1 shows the

representation of each InfoSpiders agent. The agent

interacts with the information environment that con-

sists of the actual networked collection (the Web) plus

information kept on local data structures.

The adaptive representation of InfoSpiders roughly

consists of a list of keywords, initialized with the

query terms, and of a feed-forward neural net. The

keywords represent an agent’s opinion of what terms

best discriminate documents relevant to the user from

the rest. The neural net is used to estimate links; it has

an input for each keyword and a single output unit.

The InfoSpiders algorithm is illustrated in Fig. 2.

InfoSpiders rely on either traditional search engines or

a set of personal bookmarks in order to obtain a set of

seed URLs pointing to pages supposedly relevant to the

query handed in by the user. The size of the seed set is

determined by the user and in turn determines the initial

population size. The starting documents are prefetched,

and each agent in the population is ‘‘positioned’’ at one

of these documents and given an initial amount of

energy. Energy is the currency that allows agents to

survive and crawl. The initial population size is another

parameter set by the user, determining how many

starting points to use (e.g., how many hits to obtain

from a search engine).

At each step, each agent analyzes the text of the

document where it is currently situated to estimate the

relevance of its information neighborhood, given by

the outgoing hyperlinks in the current page. In simple

terms, an agent estimates each outgoing link by looking

at the occurrence of query terms in the vicinity of the

link. The agent then uses the link relevance estimates to

choose the next document to visit. More formally, for

link l and for each keyword k, the neural net receives

input:

ink;l ¼
X

i:distðki;lÞVq

1

distðki; lÞ
ð1Þ

where ki is the ith occurrence of k in document D and

dist(ki,l) gives more weight to keyword occurrences in

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 3

ARTICLE IN PRESS

the vicinity of l, by counting intervening links up to a

maximum window size of F q links away (q = 5 in the

experiments described below). The neural network

then sums activity across all of its inputs; each unit j

computes a logistic activation function

oj ¼ tanhðbj þ
X
k

wjk in
l
kÞ ð2Þ

where bj is its bias term, wjk are its incoming weights,

and ink
l its inputs from the lower layer. The output of

the network is the activation of the output unit, kl. The
process is repeated for each link in the current docu-

ment. Then, the agent uses a stochastic selector to pick

a link with probability distribution:

Pr½l� ¼ ebklX
lVeD

ebklV
: ð3Þ

After a document has been visited, the agent needs

to update its energy. The energy is used to survive and

move, so the agent will be rewarded with energy

based on the estimated relevance of the visited docu-

ments. Agents are also charged with energy to account

for the work performed to download the page from the

network. The relevance estimation function and the

cost function must be specified in an implementation

of the InfoSpiders algorithm (see Section 3).

An agent can modify its neural net-based behavior

during its life by comparing the relevance of the current

document (as evaluated once the document is visited)

with the estimation that was made from the previous

page, prior to following the link that led to the current

one. Reinforcement learning is employed to achieve

this goal, namely a connectionist version of Q-learning

[19]. The neural net is trained online to predict values of

links based on local context. The value returned by the

estimate() function is used as an internally generated

reinforcement signal to compute a teaching error. The

neural net’s weights are then updated by back-prop-

agation of error [35]. Learned changes to the weights

are inherited by offspring at reproduction. This learning

scheme is completely unsupervised.

InfoSpiders adapt not only by learning neural net

weights, but also by evolving both neural net and

keyword representation. If an agent accumulates

enough energy, it clones a new agent in the location

where it is currently situated. At reproduction, the

Fig. 1. InfoSpiders architecture and adaptive representation.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx4

ARTICLE IN PRESS

offspring’s neural net is mutated by adding random

noise to a fraction of the weights. The keyword vector

is mutated by adding the most frequent term from the

current document. The idea is that since the current

page led to reproduction, it probably contains features

that are correlated with the user’s interests and there-

fore we want to expand the agent’s representation to

capture such features. The neural net weights associ-

ated with keyword mutations are initialized randomly,

and reinforcement learning is in charge of adjusting

them in the early stages of the new agent’s life. The

parent and offspring agents can continue the search

independently of each other.

If an agent runs out of energy, it is destroyed. Such

reproduction and death mechanisms with their fixed

thresholds make selection a local decision, independ-

ent of other agents. This way, agents are dispatched to

the most promising areas of the information space

[24,28]. Another important consequence of the local

selection mechanism is that agents have minimal

mutual interactions, making it possible for them to

execute concurrently. In the following section, we

focus on one such concurrent implementation of

InfoSpiders. Further details on some aspect of the

algorithm, as well as extensions not discussed in this

paper, such as relevance feedback, can be found

elsewhere [25,26].

3. Implementation of MySpiders

Due to the parallel nature of the InfoSpiders

algorithm, multithreading is expected to provide better

utilization of resources compared to a single thread

(sequential) implementation such as described in the

previous section. Since Java has built-in support for

threads, we decided to implement a multithreaded

version of InfoSpiders as a Java applet. The multi-

threaded implementation allows one agent to use the

network connection to retrieve documents, while

another agent can use the CPU, and another can

access cache information on the local disk.

Fig. 2. InfoSpiders algorithm.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 5

ARTICLE IN PRESS

Another benefit of a Java applet implementation

is that classes can be loaded at runtime over the

Web, thereby allowing for a Web-based deployment

of the client-based application. This approach pre-

vents the scalability problems of server-based

deployment and sidesteps the logistic difficulties of

porting, distributing, maintaining and updating a

binary application.

The multithreaded applet implementation of Info-

Spiders, called MySpiders, is available on a public

Web server1. Fig. 3 shows the user interface of the

MySpiders applet in the course of a query search. The

applet hides many parameters from the users in order

to keep the interface as simple as possible. Such

parameters are set to default values (for example,

INIT_POP is set to 10). The user specifies a query

and a maximum number of pages to be crawled by

MySpiders, which is an indication of how long the

user is willing to wait.

Once the start button is pressed, the system obtains

INIT_POP seed pages from a trusted search engine

(we currently use http://google.yahoo.com for this

purpose). Then, an automated crawl process is initi-

ated. The user can scan through a ranked list of

suggested pages found up to that time. A crawled

page is displayed to the user if its similarity to the

query is above a threshold (cf. Eq. (4) and GAMMA
in Fig. 4). Clicking on any suggested URL during the

crawl brings up the page in the default browser. The

suggested URLs are preceded by a number that

represents the agent (or spider) that found the page.

If the user likes a page, clicking on the spider that

found it provides a list of links to other pages found

by that spider. The user has the choice to stop the

search process at any time if she has already found the

desired results, or if the process is taking too long.

Otherwise the crawl stops when the population visits

MAX_PAGES documents or goes extinct for lack of

relevant information resources.

The multithreaded version of the algorithm behind

MySpiders is presented in Fig. 4. As illustrated by the

pseudocode, there are a few design decisions made to

get from the generic algorithm of Fig. 2 to this

implementation, in addition to the user interface issues

described above.
. Security: The user has to grant the applet per-

missions to access the local disk (to read and write

cache files) and the network (to open and close HTTP

connections to Web servers).
. Cache: A lock mechanism allows concurrent

access to a shared cache; the cache optimizes network

usage and also forces agents to explore new pages by

preventing energy gains for previously visited pages.

A small cost is charged for accessing the cache to

prevent cyclic behaviors by the agents. To maintain

the integrity of the cache, only a single agent can

perform read/write operations at one time. However,

since network communication is the most expensive

resource for the algorithm, the delay imposed by

caching semaphore operations is insignificant when

Fig. 3. Screen shot of MySpiders, a Web-based multithreaded Java applet implementation of the InfoSpiders multiagent system.

1 http://myspiders.biz.uiowa.edu.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx6

 http:\\myspiders.biz.uiowa.edu
 http:\\google.yahoo.com
 http:\\myspiders.biz.uiowa.edu

ARTICLE IN PRESS

compared with the speedup acquired by avoiding the

transfer of duplicate documents.
. Estimate function: Cosine similarity is used as an

estimate() function to determine the amount of energy

an agent receives the first time it visits a page:

simðq; pÞ ¼

X
keq\p

fkqfkp

ffiX
kep

f 2kp

 ! X
keq

f 2kq

 !vuut
ð4Þ

where q is the query, p is the page, and fkd is the

frequency of term k in d. This choice is in line with the

standard use of similarity to estimate relevance in

information retrieval (and in most search engines). A

global ‘‘inverse document frequency’’ factor is not

used in this weighting scheme because we assume

only local knowledge about the Web collection being

crawled.
. Cost function: HTTP response latency is used as

a cost() function to determine the amount of energy

an agent spends the first time it visits a page:

latencyðpÞ ¼ INIT POP � THETA

MAX PAGES
� timeðpÞ
TIMEOUT

ð5Þ

where time(p) is the time taken for page p to be

downloaded, THETA is the reproduction threshold

(cf. Fig. 4), and TIMEOUT is the timeout parameter

for the socket connection. The purpose of the first

term is to allow the population to visit on average

MAX_PAGES irrelevant documents before running

out of its initial energy. This choice of a latency-based

cost function is based on the idea that agents should

be charged more for visiting large pages and/or slow

Fig. 4. Pseudocode of multithreaded MySpiders applet.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 7

ARTICLE IN PRESS

servers. Empirical observations justify this cost model

on both efficiency and quality bases [10]. Another

benefit of this cost function is that the applet response

time remains reasonable even for users with a slow

connection to the Internet (e.g. over a dial-up modem

line).

4. Evaluation

4.1. Performance metrics

Evaluating an online, dynamic query-driven Web

mining system such as MySpiders presents serious

difficulties. First, relevant sets corresponding to queries

are available on certain collections, making it possible

to use standard information retrieval performance

measures such as precision and recall [22]. For

example, in previous work [25], an earlier version

of the InfoSpiders system was evaluated on a limited

and controlled chunk of the Web—a subset of the

Encyclopaedia Britannica—for which a large number

of test queries were readily available, along with the

corresponding relevant sets. The collective perform-

ance of InfoSpiders was assessed and compared to

best-first-search, a baseline heuristic in which the

links to be followed are ranked according to the

similarity between the query and the pages contain-

ing the links. We found that for queries whose

relevant sets were not too far from the InfoSpiders’

starting pages, InfoSpiders had a significant advant-

age over best-first-search. Conversely, InfoSpiders did

worse when the relevant documents were farther away.

These results suggested using search engines to provide

InfoSpiders with good starting points. To test this

hypothesis, we ran InfoSpiders as a front-end to a

traditional search engine for an ad hoc query that the

search engine could not satisfy alone [26]. InfoSpiders

did locate all of the relevant pages quickly in this

special case.

In spite of these results, given our goal to over-

come the recency/coverage limitations of search

engines, it is clear that a satisfactory evaluation of

our system can only be achieved by testing on actual,

real-time Web data rather than on limited or artificial

collections. However, the lack of relevant set infor-

mation on the real Web makes the use of standard

performance metrics impossible.

The second major difficulty is that comparing the

added value of online, query-driven Web mining with

respect to using a search engine alone is like compar-

ing apples and oranges. Clearly performing some

additional search can only yield an improvement, so

an evaluation based on recall-like statistics alone

would be unfairly biased in favor of query time

crawling. On the other hand, the cost of query time

crawling cannot be amortized over many queries, so

that an evaluation based on efficiency alone would be

unfairly biased in favor of the search engine approach

of separating crawling from querying, discounting

recency and coverage effects.

To address such difficulties, we propose to use

some novel metrics designed to allow for a fair

comparison between the two approaches, and for a

quantitative evaluation of the value added by query-

driven crawling. The idea is to design two metrics that

approximate recall and precision, respectively, when

the relevant set is unknown but some subset is known,

that is, some description of relevant pages is available.

This is quite a realistic situation for the Web. Further,

we will define a third metric to capture the recency of

a retrieved set.

Let us assume that we have a query q and some

description rq of a subset of the relevant pages. rq
could be the text of one or a few relevant pages, or an

abstract of a relevant paper, or a summary of related

resources prepared by a hub or portal site. Now

consider a user who has some good starting points,

such as the top hits returned by a trusted Web

directory or search engine, and the time to browse

through some additional pages. Such a user might

look at further hits returned by a search engine, or

alternatively launch a query driven crawler like

MySpiders.

Let us call Cq the set of additional pages obtained

either from the engine or from the crawl. We can then

define an estimated precision of the crawl set

PðCqÞu
1

ACqA

X
peCq

simðrq; pÞ ð6Þ

where sim() is the cosine similarity function defined

in Eq. (4). This metric approximates precision to the

extent that rq is a faithful approximation of the

(unknown) relevant set.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx8

ARTICLE IN PRESS

We can further define an estimated recall of the

crawl set

RðCqÞuPðCqÞ � ACqA ¼
X
peCq

simðrq; pÞ ð7Þ

that intuitively approximates actual recall, which is

obtained by multiplying precision by the size of the

retrieved set (modulo the size of the relevant set, an

unknown constant in our case).

Finally, let us define the estimated recency of the

crawl set

TðCqÞu
1

ACqA

X
peCq

1

1þ dtðpÞ
ð8Þ

where

dtðpÞ ¼
tmðpÞ 	 tiðpÞ if tmðpÞ > tiðpÞ

0 otherwise:

8<
: ð9Þ

Here tm(p) is the date when p was last modified by the

author and ti(p) is the date when p was indexed either

by the search engine or by the query driven crawler.

Clearly it would be desirable for a decision support

system to be based on an up-to-date image of the

mined documents, as reflected by a high value of the

estimated recency metric.

4.2. Experimental results

The three metrics defined above can now be used

to gauge the value of MySpiders against a search

engine as a Web mining decision support tool. We

report on experiments using AltaVista2 as a represen-

tative search engine both because it is one of the major

commercial portals and because it is one of the very

few disclosing information on the indexing date ti,

which allows us to evaluate recency.

Without loss of generality, we assume a query to be

a topic found in the Yahoo directory3. To this end, we

conducted a preliminary crawl of over 99,700 Yahoo

pages and out of these we identified a set of 100

‘‘leaf’’ topics such that each had at least 10 links to

external pages and no subtopics. We formed 100

queries (q= 0 . . . 99) using these Yahoo topics, and

then we obtained the corresponding rq for each of

these queries from the textual description of relevant

pages written by the Yahoo editors. We assume that

the pages classified in the Yahoo directory under each

topic are a subset of the relevant set for the corre-

sponding query. Table 1 shows a couple of sample

queries and descriptions.

For each query q, we obtained the 100 top-ranked

pages from AltaVista and allowed MySpiders to crawl

ACqA = 100 pages, for a total of 200 pages/query
 100

queries = 20,000 pages crawled (display threshold

GAMMA=0). Yahoo pages were removed from both

Table 1

Sample queries and relevant set descriptions (prior to removing stop words and stemming)

Query Description

EDUCATION STATISTICS Education Census—from the US Census Bureau. National Assessment of Educational

Progress—data and reports from the National Center for Education Statistics. National Education

Statistical Information Systems (NESIS)—joint programme of UNESCO/ADEA to develop

self-sustainable statistical information systems for education policy needs in Africa.

School District Data Book Profiles: 1989–1990—social, financial and administrative data for

school districts in the United States. School Enrollment—data from the US Census Bureau.

ARTS ART HISTORY

CRITICISM AND THEORY

Art Historians’ Guide to the Movies—a record of appearances of and references to famous works

of painting, sculpture, and architecture in the movies. Art History: A Preliminary Handbook—guide

to studying art history. Artists on Art—excerpts from writings and interviews of great artists past and

present on the concept and process of art, as well as artist chronologies of the periods in which they

worked. Brian Yoder’s Art Gallery and Critic’s Corner Part—magazine of art and theory produced by

CUNY graduate students. Pre-Raphaelite Criticism Underground Art Critic—offering modern art

criticism for the postmodern masses.

2 http://www.altavista.com.
3 http://www.yahoo.com.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 9

 http:\\www.altavista.com
 http:\\www.yahoo.com
 http:\\www.altavista.com
 http:\\www.yahoo.com

ARTICLE IN PRESS

sets for fairness. Fig. 5 plots the mean estimated

precision

P̄ ¼ 1

100

X99
q¼0

PðCqÞ ð10Þ

versus the number of pages returned by AltaVista and

crawled by MySpiders. Error bars correspond to stand-

ard errors, i.e., F 1 rP̄. MySpiders significantly out-

perform AltaVista in the first phase of the crawl, with

peak precision after about five pages. Around the

middle of the crawl, AltaVista catches up and the

difference becomes insignificant. After about 80 pages,

AltaVista’s precision declines and MySpiders again

have a significant advantage.

Fig. 6 plots the mean estimated recall

R̄ ¼ 1

100

X99
q¼0

RðCqÞ ð11Þ

versus the number of pages returned by AltaVista and

crawled by MySpiders. Error bars again correspond to

standard errors, rR̄. MySpiders display a slight recall

advantage over AltaVista at the beginning of the

crawl, and a larger advantage at the end of the crawl

when AltaVista basically stops retrieving relevant

pages while MySpiders continues to do well.

Fig. 7 plots the mean estimated recency

T̄ ¼ 1

100

X99
q¼0

TðCqÞ ð12Þ

versus the number of pages returned by AltaVista and

crawled by MySpiders. Error bars again correspond to

standard errors, rT̄MySpiders display a strong recency

advantage of more than one and a half orders of

magnitude over AltaVista throughout the crawl. T̄= 1

for MySpiders by design, since the crawl occurs at

query time and therefore the system automatically

filters out stale links and relies on the current version

of any page.

Fig. 8 shows a precision-recall plot based on the

mean estimated metrics P̄ and R̄ for AltaVista and

MySpiders. Error bars along the y-axis correspond to

precision standard errors, rP̄, and error bars along the

x-axis correspond to recall standard errors, rR̄.
MySpiders display a statistically significant advant-

age over AltaVista in the early phase of the crawl

Fig. 5. Estimated precision as a function of pages retrieved by AltaVista (AV) and crawled by MySpiders (IS).

F. Menczer / Decision Support Systems xx (2002) xxx–xxx10

ARTICLE IN PRESS

Fig. 7. Estimated recency as a function of pages retrieved by AltaVista (AV) and crawled by MySpiders (IS).

Fig. 6. Estimated recall as a function of pages retrieved by AltaVista (AV) and crawled by MySpiders (IS).

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 11

ARTICLE IN PRESS

Fig. 9. Estimated recency versus estimated recall for AltaVista (AV) and MySpiders (IS).

Fig. 8. Estimated precision versus estimated recall for AltaVista (AV) and MySpiders (IS).

F. Menczer / Decision Support Systems xx (2002) xxx–xxx12

ARTICLE IN PRESS

(when MySpiders find relevant pages at a high rate)

and in the final phase (when the search engine fails to

locate any additional relevant documents), while

AltaVista has a nonsignificant advantage in the mid-

dle phase.

Fig. 9 shows a recency-recall plot based on the

mean estimated metrics T̄ and R̄ for AltaVista and

MySpiders. Error bars along the y-axis correspond to

recency standard errors, rT̄ and error bars along the x-

axis correspond to recall standard errors, rR̄. My-

Spiders outperform AltaVista by a strong margin of

over one and a half orders of magnitude. More

interestingly, the mean recency of the AltaVista pages

suffers a clear loss in correspondence to the final

recall increase, while the recency of the MySpiders

pages is obviously unaffected. This trade-off between

recall and recency is a manifestation of the scalability

issue discussed in Section 1.

Another illustration of the scalability effect is

offered by Fig. 10, in which the product of the mean

estimated recency and recall, T̄R̄, is plotted versus the

number of pages returned by AltaVista and crawled

by MySpiders. Error bars for the product are estimated

by T̄rR̄+ R̄rT̄. Not only there is a large margin of

advantage for MySpiders, but the margin grows wider

as the product keeps growing at a healthy rate for

MySpiders while it starts declining after about 70

pages for AltaVista.

5. Discussion

5.1. Lessons learned

In the course of designing and running the experi-

ments described in the previous sections, we have

learned several lessons regarding the evaluation of

dynamic search tools, such as MySpiders. First, com-

paring these systems with traditional search engines is

difficult because the design goals of the two approaches

are very different. The idea of query-driven crawling is

to complement and augment search engines, not

replace them. But how to demonstrate the value added

by online browsing agents without full access to a

search engine database? This problem is compounded

by the fact that commercial search engines do not

publish the inner workings of their crawling and rank-

ing algorithms.

Fig. 10. Product of estimated recency and recall as a function of pages retrieved by AltaVista (AV) and crawled by MySpiders (IS).

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 13

ARTICLE IN PRESS

Another difficulty is introduced by the lack of an

easy way to decide how long to run MySpiders.

However, the experiments described in this paper

demonstrate that even crawling as few as five pages

at query time can lead to substantial performance

improvements (cf. Fig. 5).

The above observation also addresses the question

of the apparent inefficiency of query driven crawling

due to its lack of amortization over queries. The extra

bandwidth used at query time is negligible compared

to that used blindly by search engine crawlers, and can

easily be made up for by allowing search engine

indexes to become only slightly more out of date—

something of little consequence if offset by crawling

at query time.

Evaluation of MySpiders is complicated by their

reliance on search engines to provide starting points.

We could alternatively get the starting points from a

meta-search engine, but then it would be even harder

to attribute differences in effectiveness to the crawling

algorithm versus the starting points.

A serious problem in testing any system on actual

Web data is that the relevant sets are unknown.

Consequently, standard evaluation tools such as pre-

cision-recall plots have to rely on approximate rele-

vant sets, as we have proposed in this paper. Such sets

are likely incomplete, biased, and small—all charac-

teristics that hinder the significance of our analysis.

The Web Track of the Text Retrieval Conference is

attempting to construct a Web data set with queries

and relevant sets, but so far it has not been possible to

construct a data set of fully connected pages, allowing

for browsing agents to navigate across it.

The software engineering aspects of developing

and deploying the MySpiders prototype applet have

taught us other lessons. First, Java is a good choice of

language for this type of application. Its object-ori-

ented nature is a good match for agent-based compu-

tation in general. More importantly, Java allowed for

an efficient implementation of InfoSpiders, thanks to

its threading support. Development was also simpli-

fied because of Java’s networking support.

Unfortunately, although Java applet portability

would appear to be a big advantage on the surface,

it turns out that security issues—the need to provide a

mechanism for granting privileges to the applet—

leave such portability goals largely unrealized. In fact,

to be able to open network connections to hosts other

than the one from where the applet itself was down-

loaded, and to access the local disk for cache I/O

operations, the applet has to bypass the browser’s

security manager. To accomplish this task, we used a

combination of digitally signed applets and policy

files. Both these solutions have platform dependencies

that hinder portability and ease of use. Another issue

weakening the Java choice is the low speed of

execution of Java byte code.

5.2. Related research

Autonomous agents, or semi-intelligent programs

making automatic decisions on behalf of the user, have

been viewed for some time as a way of decreasing the

amount of human–computer interaction necessary to

manage the increasing amount of information avail-

able online [20]. A number of intelligent agents have

been developed and deployed in recent years to help

users find information on the Web.

Most existing information search agents suffer

from a common limitation: their dependence on

search engines. Typical examples of ‘‘parasite’’ agents

that rely on centralized repositories to find informa-

tion on behalf of the users are homepage and paper

finders [31,38]. While such agents can add to a search

engine very useful heuristics, they cannot overcome

the limited coverage and recency of the engines they

exploit.

While an agent whose search process consists of

submitting queries to a search engine cannot find a

document that had not already been located and

indexed by the engine, multiple search engines can

be combined in order to improve on the recall ratio of

any single engine. Such meta-search agents, including

popular ones like MetaCrawler4 and Sherlock5, have

proven successful in gathering and combining the

relevant sets from many different search engines

[16,37,39].

Recently, linkage information has been used in

algorithms designed to identify hub and authority

pages, such as HITS/Clever, and to determine the

reputation of pages, as in TOPIC [5,14,30]. Although

such techniques have demonstrated to be very effec-

4 http://www.metacrawler.com.
5 http://www.apple.com/sherlock.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx14

 http:\\www.metacrawler.com
 http:\\www.apple.com\sherlock
 http:\\www.metacrawler.com
 http:\\www.apple.com\sherlock

ARTICLE IN PRESS

tive, they too are bound by the limitations of the

search engines upon which they rely to get the pages

they evaluate. In contrast, in our proposed system,

linkage information is used to locate recent pages that

are not known to search engines.

A different class of agents have been designed to

learn a user’s interest profile in order to recommend

pages [2,7,18,33]. These agents learn to predict an

objective function online and can track time-varying

user preferences. However, they need supervision

from the user in order to work, either through direct

feedback or by monitoring the user’s browsing activ-

ity; no truly autonomous search is possible.

Other systems, based on multiagent paradigms,

adapt a matching between a set of discovery agents

(typically search engine parasites) and a set of user

profiles (corresponding to single- or multiple-user

interests) [3,32]. These systems can learn to divide

the problem into simpler subproblems, dealing with

the heterogeneous and dynamic profiles associated

with long-standing queries. However, they share the

weak points of other agents who perform no active

autonomous search, and therefore cannot improve on

the limitations of the search engines they exploit.

One last set of agent-based systems actually relies

on agents searching (browsing) online on behalf of the

user. The first of such systems, Fish Search [9], was

inspired by ecological and artificial life models. Fish

Search was hindered in effectiveness by the absence

of any adaptability in the agents. One unfortunate

consequence of its fixed search strategy was the

possibility of load-unfriendly search behaviors, parti-

ally mitigated by the use of a cache. This factor,

coupled with the growing popularity of search engines

and the relatively slow performance of Fish Search,

did not help to focus on the potential advantages of

such models. Recently, the area of query-driven

crawling (also referred to as focused crawling) has

gained new popularity [4,6,8], in part due to the

emergence of topic-specific portals.

A number of artificial intelligence techniques are

embedded in the InfoSpiders model and prototype.

The main one is the evolutionary algorithm outlined

in Fig. 2. This algorithm employs a novel local

selection scheme that has been shown to be partic-

ularly suitable for cover optimization—we are not

trying to find the best possible page, but rather as

many of the relevant pages as possible [27,28]. The

algorithm biases the search process to focus the search

on promising regions, where agents flourish.

A consequence of the evolutionary algorithm is

the adaptation of keyword representations via muta-

tions. This mechanism implements a form of selec-

tive query expansion. Based on local context, the

query can adapt over time and across different

locations in a completely unsupervised fashion. In

contrast, traditional information retrieval notions of

query expansion are dependent upon the availability

of relevance feedback from the user [36]. The pop-

ulation of agents thus embodies a distributed, hetero-

geneous model of relevance that may comprise many

different and possibly inconsistent features. However,

each agent focuses on a small set of features, main-

taining a well-defined model that remains manage-

able in the face of the huge feature dimensionality of

the search space.

The central adaptive representation employed by

InfoSpiders is the neural net that allows each agent to

assess the relevance of outgoing links. This task is

crucial because an agent pays a cost in network load to

visit a page, so it must have some confidence that the

energy is well spent. A neural net can represent com-

plex relationships between query terms, including

negative weights and nonlinear interactions [35]. Such

a level of complexity seems necessary if we expect that

agents learn to mimic the browsing skills of human

users.

Learning is also central for InfoSpiders because an

agent must be able to adapt during its life, predicting

document relevance over small time and space scales.

Examples are not available except for those based on

the agent’s own experience, so that reinforcement

learning is called for. Q-learning [40] is particularly

appropriate because the environment provides agents

with energy cues that can be maximized as future

discounted rewards. The use of Q-learning to guide

the browsing activity has also been studied independ-

ently of our evolutionary framework [34].

Finally, InfoSpiders employ several standard infor-

mation retrieval techniques, such as the removal of

noise words [11], the stemming of terms with com-

mon roots [12], and the use of similarity-based rele-

vance measures.

All these methods allow InfoSpiders to adapt to

their local environmental context over time and

across different parts of the Web. It is our conviction

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 15

ARTICLE IN PRESS

that the Web is ripe for the application of such

artificial intelligence techniques allowing for the

construction of more and more intelligent software

agents, capable not only of searching information on

behalf of the user but also of performing further

actions, e.g., buying and selling information from

other agents.

6. Conclusion

This paper presented some of the shortcomings of

traditional information retrieval systems on the Web.

Despite the fast technological developments of com-

putational tools, the rapidly growing and dynamic

nature of the Web is making static search engines

too incomplete and out of date for Web intelligence

applications. The novel contributions of this paper are

summarized as follows:
. We identified and discussed the scalability lim-

itations of the traditional search engine approach of

disjoint crawling and querying, diminishing the

usability of current search engines as an effective tech-

nology for decision support and competitive intelli-

gence tools.
. We suggested complementing search engines

with query-driven online Web mining, to build Web

intelligence tools that scale better with the dynamic

nature of the Web, allowing for the location of pages

that are both relevant and recent.
. We presented MySpiders, a public Web mining

tool deployed as a threaded Java applet. This tool

implements the InfoSpiders algorithm, a query-driven

algorithm based on an adaptive population of online

agents with an intelligent text mining behavior emu-

lating the browsing performed by human users.
. We introduced three measures designed to eval-

uate the value added of query-driven crawling with

respect to the use of search engines alone; these

metrics approximate precision and recall in the

absence of complete knowledge about relevant sets,

and further estimate the recency of retrieved pages.
. We outlined the results of experiments comparing

the performance of MySpiders with that of a major

commercial search engine in a Web intelligence task;

we showed that query-driven crawling is a more

scalable approach and leads to mining pages that are

significantly more relevant and more recent.

The evaluation measures defined in this paper

can also be used to compare different crawling

strategies. This would actually be a more direct

comparison than the analysis carried out in this

paper, since crawler algorithms are designed with

the same goal. Experiments with the estimated

precision metric show that a crawler based on Info-

Spiders significantly outperforms one based on Pag-

eRank, the algorithm employed by Google for ranking

[29]. In this type of analysis, the metrics can be

augmented with factors accounting for the different

memory and CPU complexity of the various crawler

algorithms.

The MySpiders Web site is under further develop-

ment to enable the execution of the applet code on

those platforms that are yet unsupported at the time

of this writing. The Java Network Launching Proto-

col (JNLP) is being assessed as a means to eliminate

the dependencies between operating systems and

browsers currently imposed by the use of a security

certificate.

Future improvements of MySpiders include the

implementation and testing of a relevance feedback

module, whereby users could asynchronously assess

relevant pages and agents could subsequently focus

their search on documents nearby relevant ones. We

will also experiment with alternative weighting

schemes to estimate a document’s relevance, mainly

a localized version of the TF-IDF model measuring

inverse document frequency over an agent’s history,

and with variations of the reinforcement learning

strategy (e.g., tuning learning rates and discount

factors).

Finally, in competitive intelligence applications

where recency is crucial, it can be made into an ex-

plicit fitness objective of the InfoSpiders algorithm

by allowing the energy of a document to depend

not only on its estimated relevance but also on its

age.

Acknowledgements

The author is grateful to Melania Degeratu for

contributions to earlier drafts of this paper and to

Padmini Srinivasan for helpful discussions. Gautam

Pant is responsible for the ongoing development of

MySpiders.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx16

ARTICLE IN PRESS

References

[1] R. Albert, H. Jeong, A.-L. Barabasi, Diameter of the world

wide web, Nature 401 (6749) (1999) 130–131.

[2] R. Armstrong, D. Freitag, T. Joachims, T. Mitchell, Web-

Watcher: a learning apprentice for the world wide web, AAAI

Spring Symposium on Information Gathering from Heteroge-

neous, Distributed Environments, 1995.

[3] M. Balabanović, An adaptive web page recommendation

service, Proc. 1st International Conference on Autonomous

Agents, ACM Press, New York, NY, 1997, pp. 378–385.

[4] I. Ben-Shaul, M. Herscovici, M. Jacovi, Y. Maarek, D. Pelleg,

M. Shtalhaim, V. Soroka, S. Ur, Adding support for dynamic

and focused search with Fetuccino, Computer Networks 31

(11–16) (1999) 1653–1665.

[5] S. Chakrabarti, B. Dom, P. Raghavan, S. Rajagopalan, D.

Gibson, J. Kleinberg, Automatic resource compilation by

analyzing hyperlink structure and associated text, Computer

Networks 30 (1–7) (1998) 65–74.

[6] S. Chakrabarti, M. van den Berg, B. Dom, Focused crawling: a

new approach to topic-specific web resource discovery, Com-

puter Networks 31 (11–16) (1999) 1623–1640.

[7] L. Chen, K. Sycara, WebMate: a personal agent for browsing

and searching, Proc. 2nd International Conference on Autono-

mous Agents, ACM Press, New York, NY, 1998, pp. 132–139.

[8] J. Cho, H. Garcia-Molina, L. Page, Efficient crawling through

url ordering, Proc. 7th Intl. World Wide Web Conference,

Brisbane, Australia, Computer Networks 30 (1–7) (1998)

161–172.

[9] P. De Bra, R. Post, Information retrieval in the world wide

web: making client-based searching feasible, Proc. 1st Intl.

World Wide Web Conference, Geneva, Computer Networks

and ISDN Systems 27 (2) (1994) 183–192.

[10] M. Degeratu, G. Pant, F. Menczer, Latency-dependent fitness in

evolutionary multithreaded web agents, Proc. GECCO Work-

shop on Evolutionary Computation and Multi-Agent Systems

(ECOMAS’01), San Francisco, CA, July 2001, pp. 313–316.

[11] C. Fox, Lexical analysis and stop lists, Information Retrieval:

Data Structures and Algorithms, Prentice-Hall, Upper Saddle

River, NJ, 1992.

[12] W. Frakes, Stemming algorithms, Information Retrieval: Data

Structures and Algorithms, Prentice-Hall, Upper Saddle River,

NJ, 1992.

[13] M. Henzinger, Link analysis in web information retrieval,

IEEE Data Engineering Bulletin 23 (3) (2000) 3–8.

[14] J. Kleinberg, Authoritative sources in a hyperlinked environ-

ment, Journal of the ACM 46 (5) (1999) 604–632.

[15] S. Lawrence, C. Giles, Searching the world wide web, Science

280 (1998) 98–100.

[16] S. Lawrence, C. Giles, Context and page analysis for improved

web search, IEEE Internet Computing 2 (4) (1998) 38–46.

[17] S. Lawrence, C. Giles, Accessibility of information on the

web, Nature 400 (1999) 107–109.

[18] H. Lieberman, Autonomous interface agents, Proc. ACM Con-

ference on Computers and Human Interface. Atlanta, GA,

ACM/Addison-Wesley, Boston, MA, 1997, pp. 67–74.

[19] L.-J. Lin, Self-improving reactive agents based on reinforce-

ment learning, planning, and teaching, Machine Learning 8

(1992) 293–321.

[20] P. Maes, Agents that reduce work and information overload,

Communications of the ACM 37 (7) (1994) 31–40.

[21] F. Menczer, ARACHNID: adaptive retrieval agents choosing

heuristic neighborhoods for information discovery, Proc. 14th

International Conference on Machine Learning, Morgan Kauf-

mann, San Francisco, CA, 1997, pp. 227–235.

[22] F. Menczer, Life-like agents: Internalizing local cues for rein-

forcement learning and evolution, PhD thesis, University of

California, San Diego Department of Computer Sciences and

Engineering, 1998.

[23] F. Menczer, R. Belew, Adaptive information agents in distrib-

uted textual environments, Proc. 2nd International Conference

on Autonomous Agents, Minneapolis, MN, ACM Press, New

York, NY, 1998, pp. 157–164.

[24] F. Menczer, R. Belew, Local Selection, Evolutionary Program-

ming VII, Lecture Notes in Computer Science, vol. 1447

Springer, Berlin, 1998, pp. 703–712.

[25] F. Menczer, R. Belew, Adaptive retrieval agents: internalizing

local context and scaling up to the web, Machine Learning 39

(2–3) (2000) 203–242.

[26] F. Menczer, A. Monge, Scalable web search by adaptive online

agents: an InfoSpiders case study, in: M. Klusch (Ed.), Intelli-

gent Information Agents: Agent-Based Information Discovery

and Management on the Internet, Springer, Berlin, 1999, pp.

323–347.

[27] F. Menczer, M. Degeratu, W. Street, Efficient and scalable

pareto optimization by evolutionary local selection algorithms,

Evolutionary Computation 8 (2) (2000) 223–247.

[28] F. Menczer, W. Street, M. Degeratu, Evolving heterogeneous

neural agents by local selection, in: M. Patel, V. Honavar, K.

Balakrishnan (Eds.), Advances in the Evolutionary Synthesis

of Intelligent Agents, MIT Press, Cambridge, MA, 2001, pp.

337–365.

[29] F. Menczer, G. Pant, M. Ruiz, P. Srinivasan, Evaluating topic-

driven web crawlers, Proc. 24th Annual Intl. ACM SIGIR

Conf. on Research and Development in Information Retrieval,

ACM Press, New York, NY, 2001, pp. 241–249.

[30] A. Mendelzon, D. Rafiei, What do the neighbours think? Com-

puting web page reputations, IEEE Data Engineering Bulletin

23 (3) (2000) 9–16.

[31] A. Monge, C. Elkan, The WEBFIND tool for finding scientific

papers over the worldwide web, Proceedings of the 3rd Inter-

national Congress on Computer Science Research, 1996.

[32] A. Moukas, G. Zacharia, Evolving a multi-agent information

filtering solution in amalthaea, Proc. 1st International Confer-

ence on Autonomous Agents, ACM Press, New York, NY,

1997, pp. 394–403.

[33] M. Pazzani, J. Muramatsu, D. Billsus, Syskill and Webert

identifying interesting web sites, Proc. National Conference

on Artificial Intelligence AAAI96, AAAI Press, Menlo Park,

CA, 1996, pp. 54–61.

[34] J. Rennie, A.K. McCallum, Using reinforcement learning to

spider the web efficiently, Proc. 16th International Conf. on

Machine Learning, Morgan Kaufmann, San Francisco, CA,

1999, pp. 335–343.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx 17

ARTICLE IN PRESS

[35] D. Rumelhart, G. Hinton, R. Williams, Learning internal rep-

resentations by error propagation, in: D. Rumelhart, J. McClel-

land (Eds.), Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, vol. 1, Bradford Books

(MIT Press), Cambridge, MA, 1986, Chap. 8.

[36] G. Salton, C. Buckley, Improving retrieval performance by

relevance feedback, Journal of the American Society for In-

formation Science 41 (1990) 288–297.

[37] E. Selberg, O. Etzioni, The metacrawler architecture for re-

source aggregation on the web, IEEE Expert 12 (1) (1997) 8–

14 http://www.metacrawler.com.

[38] J. Shakes, M. Langheinrich, O. Etzioni, Dynamic reference

sifting: a case study in the homepage domain, Proc. 6th Intl.

World Wide Web Conference, Computer Networks 29 (8–13)

(1997) 1193–1204.

[39] C. Vogt, G. Cottrell, Predicting the performance of linearly

combined IR systems, Proceedings of the ACM SIGIR Con-

ference, ACM Press, New York, NY, 1998, pp. 190–196.

[40] C. Watkins, Learning from delayed rewards, PhD thesis,

King’s College, Cambridge, UK, 1989.

Filippo Menczer is an Assistant Professor in the Department of

Management Sciences at the University of Iowa, where he teaches

courses in information systems. After receiving his Laurea in

Physics from the University of Rome in 1991, he was affiliated

with the Italian National Research Council. In 1998 he received a

dual PhD in Computer Science and Cognitive Science from the

University of California at San Diego. Dr. Menczer has been the

recipient of Fulbright, Rotary Foundation, NATO, and Santa Fe

Institute fellowships, among others. Dr. Menczer developed the

MySpiders system, which allows users to launch personal adaptive

intelligent agents who search the Web on their behalf. He also wrote

the LEE artificial life simulation tool, distributed with Linux and

widely used in experimental and instructional settings. The Adap-

tive Agents Research Group led by Dr. Menczer pursues interdisci-

plinary research projects spanning from ecological theory to

distributed information systems; these contribute to artificial life,

agent-based computational economics, evolutionary computation,

neural networks, machine learning, and adaptive intelligent agents

for Web, text, and data mining.

F. Menczer / Decision Support Systems xx (2002) xxx–xxx18

 http:\\www.metacrawler.com

	Introduction
	The InfoSpiders model
	Implementation of MySpiders
	Evaluation
	Performance metrics
	Experimental results

	Discussion
	Lessons learned
	Related research

	Conclusion
	Acknowledgements
	References

