
12 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n C u s t o m i z a t i o n

Adaptive Assistants for
Customized E-Shopping
Filippo Menczer and W. Nick Street, University of Iowa

Alvaro E. Monge, California State University, Long Beach

E -commerce has changed the way companies distribute their products and services

to consumers. Traditional brick-and-mortar companies continue growing the online

segment of the economy by establishing e-commerce presences. E-commerce helps them

expand their markets and reduce their costs. Internet shopping also presents consumer

benefits such as convenience and low prices. But
such benefits are partly offset by a new cost—the
time and frustration required to sift through infor-
mation on innumerable vendor sites and to learn how
to submit and manage orders. These tasks are diffi-
cult because the type, amount, and organization of
information differ from vendor to vendor. Compli-
cating matters, customers are unaware of changes in
pricing, availability, and so on unless they visit the
same sites frequently, removing a potential advan-
tage of online stores over traditional ones. Can intel-
ligent agents improve the e-shopping experience?

Currently, online shoppers can adopt a number of
strategies when looking for a product. The most
straightforward approach is to visit various vendor
sites; for each site, the shopper browses or searches
for a particular product. This simple approach has
several drawbacks. First, because no single site caters
to all shopping needs, the user’s search time increases
for each new product category. Second, getting
acquainted with individual nonstandard vendor inter-
faces slows browsing and hinders impulse shopping.
Third, this approach likely favors only the largest
vendors (owing to name-branding), which reduces
the market’s efficiency by providing fewer compet-
itive choices to consumers.

Several services let shoppers sign up to receive
price alerts that notify them when a product’s price
changes or falls below a specified amount. Some of
these services require shoppers to fill out lengthy sur-
veys, yet most of the sites offer little or no cus-
tomization. This shopping approach also weakens
user privacy.

Another solution involves compilation of voluntary
user ratings and reviews of vendors and products.1

Such recommendation systems might reduce the mar-
ketplace’s size and introduce bias, because obtaining
a sufficient number of ratings for every vendor and
controlling the sources’ reliability are difficult.

Another alternative further automates and gener-
alizes the search.2,3 As early as 1995, researchers pro-
posed comparison-shopping agents (also known as
shopping bots) as a solution for finding products
under the best terms (price was typically the most
important feature) among vendor sites. A shopping
agent queries multiple sites on behalf of a shopper to
gather pricing and other information on products and
services. Most comparison-shopping agents, how-
ever, present a marketplace that is biased in favor of
the vendor sites that collaborate with (pay fees to) the
shopping agent. In addition, a shopper has only a lim-
ited number of vendor sites to choose from, and often
the participating sites do not offer the best prices. (For
more on shopping agents, see the related sidebar.)

Intelligent customization techniques can greatly
improve the accessibility and consumer benefits of
e-shopping by creating a personalized (and thus more
efficient) marketplace. We designed and built Intelli-
Shopper, a new type of shopping agent that can pro-
vide customers with adaptive and customized shop-
ping assistance. IntelliShopper learns users’personal
preferences and autonomously shops on their behalf
while protecting their privacy.

Goals
We developed IntelliShopper as an intelligent

Shopping bots today

are biased toward

vendors who pay to be

listed. To make user-

centered business

models viable, we

developed

IntelliShopper, which

learns shoppers’

individual preferences

and autonomously

monitors vendor sites

for items matching

those preferences.

agent that could provide real shoppers with
real assistance. We had three design goals.

First, the shopping assistant should cus-
tomize its behavior adaptively by learning
each user’s preferences. The shopping assis-
tant can achieve this personalization by
observing a user’s shopping actions. When a
user considers the items available at Internet
shopping sites, he or she indirectly provides
feedback by browsing. The agent can infer
user preferences from this feedback and
apply that knowledge to take initiative on
future searches and to predict when an item
might interest a user. Adaptive customization
means that the shopping assistant should be
able to track and cover each user’s dynamic
and diverse shopping behaviors.

Second, the shopping assistant should pro-
vide the best possible service by remaining as
independent (autonomous) as possible from
both customers and vendors. Independence

from vendors ensures that the service re-
mains unbiased by performing wide searches
(instead of searching only the databases of
“partner” vendors). Such autonomy results
from more-uniform interfaces and improved
methods for interpreting potential hits. Inde-
pendence from the customer means that the
shopping assistant proactively monitors ven-
dor sites on the user’s behalf, notifying the
user of products that might interest him or
her. This autonomy relieves users of te-
diously searching for information and adjust-
ing to different vendor sites.

Third, the shopping assistant should pro-
tect the shoppers’privacy by concealing their
identities and behavior from vendors and from
the shopping assistant itself. However, this pri-
vacy would be revoked if users abuse it.

We first discussed these goals in the con-
text of an early model and prototype of Intelli-
Shopper.4 Here we describe a more advanced

model and implementation, which has bene-
fited from many lessons learned through the
early prototype. We focus on how Intelli-
Shopper presents shoppers with new informa-
tion, customized on the basis of heterogeneous
and dynamic profiles that the agent learns by
observing users’online shopping behavior.

IntelliShopper architecture
The current IntelliShopper prototype

resides at http://myspiders.biz.uiowa.edu/
~fil/intellishopper. Figure 1 illustrates Intelli-
Shopper’s logic and high-level architecture.

The following numbers (see Figure 1) indi-
cate the sequence of shopping-assistance
activities:

1. The user creates an account and one or
more personae.

2. The user takes on a persona.
3. The persona initiates a shopping ses-

NOVEMBER/DECEMBER 2002 computer.org/intelligent 13

Shopping agent research dates to the Web’s early years. In
1995, Andersen Consulting developed BargainFinder, the
first shopping agent.1 It let users compare prices of music
CDs from Internet stores. However, some retailers blocked
access because they did not want to compete on price, and
BargainFinder ceased operation.

PersonaLogic, another unbiased comparison-shopping
agent, let users create preference profiles to describe their
tastes. This approach allowed the shopping agent to identify
products with features important to users. However, vendors
had to provide interfaces that explicitly disclosed product fea-
tures such that the shopping agent could match them with
user profiles. AOL (America Online) acquired PersonaLogic in
1998, and the technology disappeared.

Ringo was an agent that recommended entertainment
products (such as CDs and movies) on the basis of collaborative
filtering, using opinions of like-minded users.2 This became
one of the earliest commercialized software-agent technolo-
gies when it evolved into the FireFly agent. FireFly addressed
privacy issues by initiating and promoting the P3P standard.
Microsoft acquired FireFly Network Inc. in 1998, and the FireFly
agent ceased operation shortly thereafter. However, collabora-
tive filtering has become a common technique—for example,
large commercial vendors such as Amazon use it, although in
simplified ways.

ShopBot, another agent, could submit queries to e-com-
merce sites and interpret the resulting hits to identify lowest-
priced items.3 ShopBot automated the building of “wrappers”
to parse semistructured (HTML) documents and extract fea-
tures such as product descriptions and prices. Our goals with
IntelliShopper are similar, but we focus on learning user pref-
erences, and we use a manual approach for specifying how to
extract those features from vendor sites. The ShopBot technol-
ogy’s fate was similar to those of PersonaLogic and FireFly.
Excite acquired and commercialized it (under the name Jango)

but soon replaced it with a biased vendor-driven agent.
Tete@Tete was an agent that integrated product brokering,

merchant brokering, and negotiation.4 A startup called Fric-
tionless Commerce is applying the technology to business-to-
business markets (e-sourcing) rather than to business-to-
customer markets.

Most comparison-shopping agents now available to con-
sumers (MySimon, DealTime, and RoboShopper, for instance)
are biased, presenting results only from partner companies
who pay fees to participate. The current business model for
shopping bots is based on vendor revenue, not buyer revenue;
users are reluctant to pay fees for these services. However, a
vendor-revenue model produces hidden costs such as higher
prices, limited choice, and poor service. In this context, the es-
tablished vendors’ reluctance to be friendly to shopping bots is
certainly understandable.

References

1. B. Krulwich, “The BargainFinder Agent: Comparison Price Shop-
ping on the Internet,” Agents, Bots and Other Internet Beasties,
J. Williams, ed., Sams (Macmillan), Indianapolis, 1996, pp. 257–
263.

2. U. Shardanand and P. Maes, “Social Information Filtering: Al-
gorithms for Automating ‘Word of Mouth’,” Proc. ACM Conf.
Human Factors in Computing Systems (CHI 95), ACM Press, 1995,
pp. 210–217; www.acm.org/sigchi/chi95/Electronic/documnts/
papers/us_bdy.htm.

3. R.B. Doorenbos, O. Etzioni, and D.S. Weld, “A Scalable Compari-
son-Shopping Agent for the World Wide Web,” Proc. 1st Int’l.
Conf. Autonomous Agents, ACM Press, New York, 1997, pp. 39–48.

4. P. Maes, R.H. Guttman, and A. Moukas, “Agents That Buy and Sell,”
Comm. ACM, vol. 42, no. 3, Mar. 1999, pp. 81–91.

Shopping Agents

sion by submitting a query to the learn-
ing agent.

4. The learning agent stores the user’s
request in the database.

5. The learning agent uses vendor plug-
ins to send requests to vendors.

6. Results from vendors are parsed
through the vendor plug-ins.

7. IntelliShopper stores the results in the
database.

8. The learning agent uses the persona
profile to rank the hits.

9. The learning agent presents the results
to the persona.

10. The privacy agent forwards the results
to the user.

11. The user can further interact with the
learning agent.

12. The monitor agent loads standing
queries from the database.

13. The monitor agent uses the vendor
plug-ins to autonomously check for any
new results from the vendors.

14. IntelliShopper parses new and updated
hits.

15. IntelliShopper stores the hits in the
database until the user logs in for a new
interactive session.

Steps 1 through 11 describe the basic inter-
action loop, during which the learning agent
observes the persona’s actions and updates
the profile accordingly. Steps 12 to 15 occur
offline.

The privacy agent lets the user take on a
shopping persona and hides all identifying
user information from the rest of the system.
It resides on an anonymizer—one or more
servers between the user and the Intelli-
Shopper server. These servers forward re-
quests and responses, and anonymize by
permutation, stripping of IP addresses, en-
cryption, and decryption.1 Users can com-
municate privately because the anonymizer
hides from merchants information such as
the IP address from which requests emanate
and to which responses are directed. In a
standard implementation, a number of ser-
vers might act together as the anonymizing
agent. In such a case, the anonymizer would
work even if all but one of the servers were
compromised. So, for efficiency’s sake, our
prototype uses only one anonymizing server.
This is a special (degenerate) case in which
the server itself is the privacy agent. Users
must be able to trust this server; it should not
have any commercial relation to vendors or
other parties wishing to determine shoppers’
identities. We assume that the user’s privacy
is to be protected only during shopping—the
customer will not conduct purchases via
IntelliShopper. (For more on personae and
privacy, see the “Privacy” sidebar.) A shop-
ping persona is a unique identity that reflects

14 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n C u s t o m i z a t i o n

IntelliShopper serverAnonymizing server

Shopping
persona

Vendor
plug-ins9

10

10

1, 11 Privacy
agent

2
8 13

7, 15

5

MySQL

Learning
agent

Monitor
agent

4

12

5, 13

6, 14

Vendor
Web sites

3

Figure 1. The IntelliShopper architecture. Light-gray arrows represent Web interactions
based on the HTTP protocol. Dark-gray arrows represent SQL-based interactions.
White arrows represent internal logic. Numbers indicate the sequence of shopping-
assistance activities (see the main text for an explanation).

There is a strong connection between our concept of shop-
ping personae and well-known cryptographic techniques. Our
personae allow fine-level customization across heterogeneous
and dynamic shopping preferences. Similarly, established cryp-
tography can confer various types and degrees of privacy to
online shoppers through the use of pseudonyms.1

Users may adopt different personae to hide their identities
from IntelliShopper and other parties. From a privacy perspec-
tive, a persona is a pseudonym that a user employs for a partic-
ular type of activity that he or she wishes to separate (decorre-
late) from other activities. However, if a user employs a
particular pseudonym or persona for a long time, it becomes
part of the user’s identity. In fact, the possibility of linking a
pseudonym to the real identity only once (with some reasonable
probability) is sufficient for the association to remain. So, privacy
requires that users migrate between personae; the migration
frequency depends on the degree of privacy users desire.

On the other hand, the learning agent’s performance and
the customization process’s usefulness depend on the use of

relatively long-lived personae. To balance these requirements,
users may obtain descriptors that label their shopping behavior,
allowing them to submit these along with new personae. Such
descriptors, however, must not be detailed enough to allow
strong cross-pseudonym correlations. Furthermore, multiple
pseudonym updates should be performed at the same time,
preferably by a large portion of the user population each time.

For more information on shopping-agent privacy, see the
paper on IntelliShopper.2

References

1. R. Arlein et al., “Privacy-Preserving Global Customization,” Proc.
2nd ACM Conf. Electronic Commerce (EC 2000), ACM Press, New
York, 2000, pp. 176–184.

2. F. Menczer et al., “IntelliShopper: A Proactive, Personal, Private
Shopping Assistant,” Proc. 1st ACM Int’l. Joint Conf. Autonomous
Agents and MultiAgent Systems (AAMAS 2002), ACM Press, New
York, 2002, pp. 1001–1008.

Privacy

a particular user’s mode of use. Its public
descriptors are independent of the owner’s
identity, location, and so on. The persona
becomes the “public user” that the Intelli-
Shopper system components see and could
be disclosed to merchants without compro-
mising the user’s identity. IntelliShopper
indexes its history-based preference database
by persona descriptors rather than by user
names, IP addresses, cookies, or other iden-
tifying information that current commercial
notification and brokering systems use. The
persona has two explicit purposes. First, it
protects the user’s privacy—the IntelliShop-
per database never stores any identifying per-
sonal information about the user. Second, it
allows for customization of multiple hetero-
geneous user profiles so that the user can
adopt different personae for different shop-
ping needs (for instance, “gadget geek” ver-
sus “loving spouse”). IntelliShopper can
learn different shopping preferences for each
persona. Figure 2a shows the interface for
adding a new persona.

When a user logs in, IntelliShopper dis-
plays the profiles it learned (see Figure 2a
and 2b) on the basis of the current persona’s
shopping history. IntelliShopper displays the
shopper’s history, with live links to out-
standing queries for which the monitor agent
has found new hits.

Additionally, the user can submit a new
shopping request via the query interface (see
Figure 3) rather than learning each vendor
site’s format. For example, one auction site
might report the absence of bids as “0” and
another as “—.” Auction sites also use many
different formats to display the time remain-
ing in an auction; the format sometimes
varies even within a single site. A site might
indicate that an auction ends “at 6:30PM” at
one time and “in 10 minutes” at a later time
for the same item. IntelliShopper converts all
these formats to common data domains
before it stores each feature’s value in the
database. (The time format shown in the
interface is taken directly from the sites; the
agent stores a normalized time remaining for
each of the vendor results.) Once Intelli-
Shopper has received the results from the var-
ious vendors and collated, parsed, and stored
them in the database, the learning agent ranks
them according to the persona’s profile and
presents them to the user (see Figure 3b).

Vendor plug-ins let IntelliShopper inter-
face with online stores and auctions. From
IntelliShopper’s perspective, interfacing with
a vendor has two aspects: submitting queries

and parsing results. Submitting queries is
simpler; it consists of identifying an appro-
priate form, submission protocol, and input
syntax on each vendor site. Parsing results is
more difficult because it consists of identi-
fying items and extracting feature values for
all desired features (product description,
price, and so on). Vendors could readily sim-
plify this task (by using XML-based output,
for instance). However, many vendors are
uninterested in price competition, so they use
complex, changing HTML markup to make

it difficult for shopping bots to extract infor-
mation from their sites. Some vendors even
exclude bots.

Research is ongoing in the development of
intelligent wrappers that could automate sub-
mitting queries and parsing results. In fact,
there is an “arms race” between the intelli-
gent wrappers that shopping bots employ and
the growing complexity of HTML interfaces.
Rather than trying to build automatic wrap-
pers, we simplified the task of hand-coding
wrappers by designing a language for speci-

NOVEMBER/DECEMBER 2002 computer.org/intelligent 15

Figure 2. Handling multiple personae: (a) IntelliShopper’s interface for adding a new
persona; (b) summaries of shopping profiles for a user’s two personae.

(a)

(b)

(c)

fying vendor-dependent logic. This way, new
vendor plug-ins can be written in minutes.
IntelliShopper can integrate a new vendor any

time a new plug-in appears in the appropri-
ate directory. The current prototype has plug-
ins for eBay, Yahoo, and Amazon auctions.

Figure 4 exemplifies the plug-in language,
which is based on XML and is inspired by
Apple’s Sherlock engine. For querying, there
are tags with fields that specify the form’s
URL, the submission protocol (GET/POST),
and the necessary input parameters. For pars-
ing, there is a tag with fields that specify fea-
ture names and Perl regular expressions that
extract the corresponding feature values. The
representation makes updating plug-ins easy.
However, because vendor site design changes
rapidly, this approach would be significantly
more robust if vendors were to use an open
interface. An open interface would allow such
changes to take place automatically rather
than manually.

IntelliShopper stores data about its shop-
per personae and their profiles, queries, prod-
uct hits, and features in a relational database.
Figure 5 is an entity-relationship diagram
that outlines the database design. The Prefer-
ence and Keyword entities store each persona’s
profile, which IntelliShopper learns by ob-
serving the persona’s shopping behavior and
uses to customize the information it presents
to the user. We denormalized the database
schema for improved efficiency; we merged
into a single table the Item and Feature entities
that store information about hits and user
feedback.

Customization
IntelliShopper adapts to user preferences

to better rank hits with continued use. Our
approach is based on gathering maximum
information while requiring minimum user
feedback. Information-filtering and Internet-
recommendation systems have widely em-
ployed the idea of learning user behaviors by
“looking over the user’s shoulder.”5,6 Intelli-
Shopper presents information to the user in
a way that lets the learning process easily
incorporate the user’s actions. The system
increases the rankings of hits similar to those
that previously interested the user and re-
duces the rankings of hits similar to items
that the user has ignored or actively disliked.

Our adaptation scheme, as is typical in
inductive machine learning, is based on a col-
lection of features extracted from the hits.
IntelliShopper chooses features that might
be relevant to the user’s evaluation of the
item. Features can be either numerical or tex-
tual. For instance, the current IntelliShopper
prototype uses these numerical features for
auction sites: price, number of bids, and time
remaining in the auction. Textual features are
keywords that appear in product descriptions.

16 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n C u s t o m i z a t i o n

Figure 3. IntelliShopper queries: (a) the query interface; (b) query results based on the
current persona’s shopping profile.

(a)

(b)

Figure 4. A simplified example of a vendor plug-in, which has logic for submitting
queries (the top half) and interpreting the results (the bottom half).

For each numerical feature x, we maintain
a distribution of temperatures across the range
of possible values. A feature–value pair’s tem-
perature should correspond with the user’s
desire for an item with that characteristic;
high temperature signifies a desirable value,
low temperature an undesirable one. We
maintain temperatures for each possible value
of discrete features; for example, a “color”
feature might have a low temperature for the
value “pink.” Continuous variables are dis-
cretized; the “price” feature might have a high
temperature for the value “very low.” Cut-off
points for the discretization are based on the
mean µ and standard deviation σ of feature
values observed among hits:

• Very low (x < µ − (3/2)σ)
• Medium low (µ − (3/2)σ ≤ x < µ − (1/2)σ)
• Average (µ − (1/2)σ ≤ x < µ + (1/2)σ)
• Medium high (µ + (1/2)σ ≤ x < µ + (3/2)σ)
• Very high (µ + (3/2)σ ≤ x)

For textual features, we maintain a vector
of keywords associated with each persona
profile. The agent extracts keywords from
product descriptions. (It removes very com-
mon word endings and “noise” words such
as “the,” and conflates the remaining terms
with a standard stemming technique used in
information retrieval.)7

IntelliShopper updates temperatures for
feature values and keywords after any user
action related to a given hit. The temperature
associated with a hit’s feature values and
description keywords follows a simple
update rule: T(t + 1) = (1 − α)T(t) + α∆T,
where the learning rate α (0 ≤ α ≤ 1) deter-
mines how quickly a profile forgets old pref-
erences and tracks new ones. (We set α =
0.25 in the current prototype.)

Any hit has five possible actions (or inac-
tions), each with its own effect on ∆T for the
corresponding keywords and feature values:

• Buy: Clicking on the Buy option is strong
positive feedback; it results in a tempera-
ture increase ∆T = +2 for all of that item’s
feature values.

• Browse: Clicking on the item description
is weak positive feedback; the temperature
increase is ∆T = +1.

• Ignore: If a user does not get far enough
down the list to assume that he or she
looked at an item, no inference is made
(∆T = 0).

• Skip: Bypassing an item (that is, clicking
on one farther down the hits list) is weak

negative feedback: ∆T = −1.
• Remove: Actively deleting an item is

strong negative feedback: ∆T = −2.

There are certain precedence rules in
assigning feedback. For example, if a user first
browses and then buys or removes an item, we
apply the stronger feedback (∆T = ±2). Intelli-
Shopper assigns the Skip action only if it
receives no other feedback for an item.

Figure 6 illustrates the profile update algo-
rithm. The learning agent adjusts the persona
profile after each user action. IntelliShopper
uses the profile to customize the information
it presents the user by ranking the hits accord-
ing to a simple sum of the temperatures for
their feature values and their description key-
words. User interactions during a shopping
session cause IntelliShopper to re-rank the
hits on the basis of the updated profile.

In the case in Figure 6, the user clicks to
buy the second item. From this action, the
learning agent infers a strong interest for
high-priced items and a mild disinterest for
average-priced items (because the user
skipped the first hit). The learning agent
updates the corresponding price ranges’
temperatures accordingly. Similarly, when
focusing on keywords, the learning agent
infers a strong interest for the terms “illi,”
“caff,” “import,” and “itali” (the stemming

algorithm changes “italy” to “itali”) and a
mild disinterest for the terms “lavazza,”
“oro,” “vacuum,” and “pack.” Once the
learning agent updates the temperatures
(weights) of these terms, it crops the key-
word vector to retain only the 32 terms with
highest and lowest T. For legibility, this fig-
ure denotes only three possible values for
numerical features and only three terms in
the keyword vector.

Evaluation
Evaluating an agent such as IntelliShopper

is difficult because performance measures are
subjective. Ideally, we should compare user
satisfaction between shoppers using Intelli-
Shopper and shoppers using other shopping
agents, which is problematic for a number of
reasons (different functionalities, survey bias,
cost, and so on). Fortunately, evaluation is rel-
atively straightforward if we limit it to the sys-
tem’s performance in customizing shopping
information on the basis of learned persona
profiles.

The goal is an evaluation measure that is
quantitative, objective, and based on data
from real users. So, we asked eight volun-
teers to use IntelliShopper during actual
shopping sessions. During each session a
subject could take on any persona, submit
requests, examine new hits for previous

NOVEMBER/DECEMBER 2002 computer.org/intelligent 17

Query

Start time Duration

Frequency

Submits

Hits

Persona Preferred
vendorActs as Shops at

Preference

Temperature

HasKeyword Reacts to

Sells

Feature

Item

Has

User

Stem

Weight

Feature

Range

Feedback

Range

Value

Figure 5. A simplified entity-relationship model of the IntelliShopper database.

requests, and interact with the learning agent
through the IntelliShopper user interface. We
recorded all user requests, hits, and feedback,
along with two rankings of all the hits in each
session. The system used the first ranking to
display hits based on learned user profiles. It
computed the second ranking on the basis of
the feedback it inferred from user actions
during each session. For the hit set corre-
sponding to each (persona, session, query) tuple,
we measured the Spearman’s rank correla-
tion coefficient between these two rankings.
The formula is as follows:

,

where rIS is the rank based on IntelliShop-
per’s learned profile, ru is the rank based on
user feedback, and n is the number of hits.

If the shopping assistant is effective, the
correlation between the ranks the system
learned and the ranks it inferred from user
feedback should be positive. Furthermore, if
a persona has a consistent shopping behavior,
the learning agent should be able to inter-
nalize this behavior, so the correlation should
increase over multiple sessions.

Figure 7 plots the mean Spearman’s rank
correlation coefficient against the number of
shopping sessions. In this case, the subjects
submitted 42 queries as 15 distinct personae.
The experiment involved 4,759 distinct hits.
For every query in each session for each per-
sona, we computed a correlation coefficient
across hits; then we averaged these coeffi-
cients across personae and queries for each
session. We plot the resulting mean rank cor-
relation for sessions in which at least 10 (per-
sona, query) measurements are available. For a
set of hits whose feedback-based ranks are
tied, we can break the tie optimistically
(according to IntelliShopper’s ranks). We
used this method to evaluate an early proto-
type in which neither multiple personae per
user nor keyword-based profiles were yet
implemented; that data4 is based on a larger
number of subjects (51) and queries (97) than
in the current example, but fewer sessions
and hits. We obtained lower (but still posi-
tive) correlation values without breaking ties
in ranking.

The positive correlation in Figure 7 shows
that the shopping assistant effectively cus-
tomizes product information to show users,
even when users have not seen the products

ρ = −

−()

−()
=
∑

1 6
1

2

1
2

r i r i

n n

IS u
i

n

() ()

18 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n f o r m a t i o n C u s t o m i z a t i o n

|

|

|

Feature low avg high
Price 1.50 1.00 1.00
Bids
Time
...

Before user click

Feature low avg high
Price 1.50 0.50 1.25
Bids
Time
...

After user click

0.75 × 1.00 +0.25 × (–1)
0.75 × 1.00

+0.25 × (+2)

Term Weight
caff 1.25
illi 0.50
folger -1.00

After sort and crop
Term Weight
caff 1.00
vacuum 0.50
folger -1.00

Before user click
Term Weight
caff 1.25
vacuum 0.13
folger -1.00
lavazza -0.25
oro -0.25
pack -0.25
illi 0.50
import 0.50
itali 0.50

After user click

0.75 × 0.50

+0.25 × (+2)

+0.25 × (–1)

Figure 6. How the learning agent changes a profile following a user action. When the
user clicks on the second item, the learning agent updates the temperatures of the
price ranges and keywords. IntelliShopper crops the keyword vector so that only the
most discriminating terms are retained.

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6

M
ea

n
ra

nk
 c

or
re

la
tio

n

Shopping session

IntelliShopper prototype
Single persona per user, no keyword profile
No breaking of user rank ties

Figure 7. The Spearman correlation between IntelliShopper’s ranking and ranks
inferred from user feedback.

before. IntelliShopper requires a few sessions
to learn persona profiles that are sufficiently
general. The initial dip in performance is
because a profile learned from feedback on a
single query does not appropriately predict
user preferences for different queries. The
presence of keyword information in persona
profiles exacerbates this “learning curve.” The
keyword features that effectively rank hits for
a single query are often too specific to cap-
ture a persona’s general preferences. After
three sessions, the keywords in the profile
effectively predict user behavior, and after
four to five sessions IntelliShopper’s learning
agent reaches a stable tracking regime.

The customization advantages of agents
such as IntelliShopper stem from a

business model in which vendors may bene-
fit economically from becoming friendly to
shopping agents that put the customer at the
center of the business relationship. Intelli-
Shopper is based not only on price competi-
tion but also on several other factors. We
believe this is a better business model than
price-only bots and comparison-shopping
agents that are biased by vendor member-
ships. The first generation of user-centered
shopping bots did not survive the transition
to the commercial realm; the sophistication
of future online shoppers will decide the fate
of the new generation of shopping assistants.

We plan to implement a few extensions and
improvements to the system before Intelli-
Shopper is ready for prime time. We will add
more simple features (such as brand name),
subject to our ability to consistently extract
them from product hits. We can make the tem-
perature-update procedure adaptive so that, for
instance, the price feature will weigh more
heavily in ranking hits for a user that often
makes decisions based on price. We can also
tune the learning rate adaptively to track
dynamic profiles efficiently. The user interface
will be improved as well. For example, we plan
to allow users to choose multiple items to
remove simultaneously from the hits list. Such
an action will reduce the number of database
transactions and will render feedback to the
learning agent more consistent. We intend to
study the opportunities for collaborative filter-
ing that stem from centralized shopping assis-
tants such as IntelliShopper. Given the estab-
lished effectiveness of collaborative filtering,
we may extend hit sets at the user’s option by
clustering personae with similar profiles.

Acknowledgments
We are very grateful to Markus Jakobsson for

many helpful suggestions and discussions on the
privacy aspects of shopping agents. Narayan
Vishwakarma contributed to the early prototype
implementation. Thanks to the Center for Dis-
crete Mathematics and Theoretical Computer Sci-
ence (DIMACS) for support and to the volunteers
who helped with the evaluation. The server host-
ing the IntelliShopper prototype was made avail-
able by a University of Iowa instructional im-
provement award.

References
1. M. Jakobsson and M. Yung, “On Assurance

Structures for WWW Commerce,” Proc. 2nd
Int’l Conf. Financial Cryptography, Lecture
Notes in Computer Science, no. 1465,
Springer-Verlag, Heidelberg, 1998, pp.
141–157.

2. J.O. Kephart and A.R. Greenwald, “Shopbot
Economics,” Autonomous Agents and Multi-
Agent Systems, vol. 5, no. 3, September 2002,
pp. 255–287.

3. A.R. Greenwald and J.O. Kephart, “Shopbots
and Pricebots,” Proc. 16th Intl. Joint Conf.
Artificial Intelligence (IJCAI 99), Morgan
Kaufmann, San Francisco, 1999, pp. 506–
511.

4. F. Menczer et al., “IntelliShopper: A Proac-
tive, Personal, Private Shopping Assistant,”
Proc. 1st ACM Int’l. Joint Conf. Autonomous
Agents and MultiAgent Systems (AAMAS
2002), ACM Press, New York, 2002, pp.
1001–1008.

5. T. Joachims, D. Freitag, and T. Mitchell,
“WebWatcher: A Tour Guide for the World
Wide Web,” Proc. Int’l. Joint Conf. on Artifi-
cial Intelligence (IJCAI 97), Morgan Kauf-
mann, San Francisco, 1997, pp. 770–777.

6. H. Lieberman, “Autonomous Interface
Agents,” Proc. ACM Conf. Human Factors
and Computing Systems (CHI 97), ACM
Press, New York, 1997, pp. 67–74.

7. Martin F. Porter, “An Algorithm for Suffix
Stripping,” Program, vol. 14, no. 3, July 1980,
pp. 130–137.

NOVEMBER/DECEMBER 2002 computer.org/intelligent 19

T h e A u t h o r s
Filippo Menczer is an assistant professor in the University of Iowa’s Depart-
ment of Management Sciences and a faculty member of the university’s Pro-
gram in Applied Math and Computational Sciences. His interdisciplinary
research interests include Web, text, and data mining; Web intelligence; dis-
tributed information systems; adaptive intelligent agents; evolutionary com-
putation; machine learning; neural networks; complex systems; artificial life;
and agent-based computational economics. He received his Laurea in physics
from the University of Rome and a dual PhD in computer science and cog-
nitive science from the University of California at San Diego. He has received

a National Science Foundation CAREER award as well as Fulbright, Rotary Foundation, and NATO
fellowships, and is a Santa Fe Institute fellow at large. Contact him at S320 Pappajohn Business Bldg.,
Univ. of Iowa, Iowa City, IA 52242; filippo-menczer@uiowa.edu.

Alvaro E. Monge is an associate professor in the Department of Computer
Engineering and Computer Science at California State University, Long
Beach. His research interests include information retrieval, knowledge dis-
covery, database system integration, software agents, data warehousing, and
computer science education. He earned his BS in computer science from the
University of California at Riverside and his MS and PhD in computer sci-
ence from the University of California at San Diego. He is a member of the
ACM, ACM SIGMOD, ACM SIGCSE, and ACM SIGAPP. Contact him at
California State Univ. Long Beach, CECS Dept, 1250 Bellflower Blvd., Long

Beach, CA 90840-8302; monge@cecs.csulb.edu.

W. Nick Street is an associate professor in the University of Iowa’s Man-
agement Sciences Department. His research interests are in machine learn-
ing and data mining—particularly the use of mathematical optimization in
inductive learning techniques. His recent work has focused on dimensional-
ity reduction (feature selection) in high-dimensional data for classification and
clustering; ensemble prediction methods for massive and streaming data sets;
and learning shapes for image segmentation, classification, and retrieval. He
received his PhD in computer sciences from the University of Wisconsin. He
has received a National Science Foundation CAREER award and a National

Institute of Health Individual National Research Service Award postdoctoral fellowship. He is a mem-
ber of the IEEE, the ACM, the AAAI, and the Institute for Operations Research and the Management
Sciences. Contact him at S232 Pappajohn Business Bldg., Univ. of Iowa, Iowa City, IA 52242;
nick-street@uiowa.edu.

