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Abstract- In an increasingly competitive marketplace, one
of the most interesting and challenging problems is how
to identify and profile customers who are most likely to be
interested in new products or services. At the same time,
minimizing the number of variables used in the predic-
tion task is important with large databases. In this pa-
per we consider a novel application of evolutionary multi-
objective algorithms for customer targeting. Evolution-
ary algorithms are considered effective in solving multi-
objective problems because of their inherent parallelism.
We use ELSA, an evolutionary local selection algorithm
that maintains a diverse population of solutions approxi-
mating the Pareto front in a multi-dimensional objective
space. We use artificial neural networks (ANNSs) for cus-
tomer prediction and ELSA to search for promising sub-
sets of features. Our results on a real data set show that
our approach is easier to interpret and more accurate than
the traditional method used in marketing.
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geted marketing messages to maintain their competitive mar-
ket edge [1]. At the same time, with the size of databases
growing rapidly, data dimensionality reduction becomes an-
other important factor in building a prediction model that is
fast, easy to interpret, cost effective, and generalizes well to
unseen cases. Principal Component Analysis (PCA) [6] and
logistic regression have been among the most popular mod-
els in the marketing industry for data reduction and predic-
tion, respectively. In this study, we propose a new approach
that combines EMO algorithms for data reduction and artifi-
cial neural networks (ANNSs) for the customer prediction task.
Our approach is different from previous studies on direct mar-
keting in the sense that they did not consider either multiple
objectives [11] or data reduction [1].

Data reduction is performed via feature selection in our
approach. Feature selection is defined as the process of choos-
ing a subset of the original predictive variables by eliminating
redundant features and those with little or no predictive infor-
mation. If we extract as much information as possible from
a given data set while using the smallest number of features,
we can not only save a great amount of computing time and

In the last decade, evolutionary multi-objective (EMO) algo-cost, but often build a model that generalizes better to unseen
rithms have been applied to solve many engineering and scpoints. Feature selection can also significantly improve the
entific problems [20, 10, 16, 3]. In multi-objective optimiza- comprehensibility of the resulting classifier models. Even a
tion problems, we expect a set of optimal solutions rathecomplicated model — such as a neural network — can be
than a single optimal solution because each solution shoulohore easily understood if constructed from only a few vari-
be evaluated on multiple objectives and often such objectiveables. In marketing applications it can also be useful to com-
are in conflict with each other. In particular, we are interestednunicate the set of good predictive variables to the sales staff,
in finding a non-dominated solution set oParetooptimal  giving them rules of thumb for targeting potential customers.
set! We note that many business-related problems can alsd/e adopt the wrapper model [9] of feature selection which re-
be modeled using the EMO framework. The multi-objectivequires two components: a search algorithm that explores the
nature of the decision making process in various business agombinatorial space of feature subsets, and one or more cri-
plications makes EMO algorithms ideal to provide human deterion functions that evaluate the quality of each subset based
cision makers with a set gfoodcandidate solutions, and for directly on the predictive model.
exploring the trade-offs among the various objectives. An evolutionary algorithm is used to search through the
For instance, most market managers realize that the trgpossible combinations of features, and two quality measure-
ditional, one-to-one customer relationships have largely disments, hit rate (which should be maximized) and complexity
appeared and that consumer behavior has become infinite(which should be minimized), are used to evaluate the qual-
more volatile and difficult to predict. Rapidly changing de- ity of each feature subset. Many popular EMO algorithms do
mographic patterns force more and more organizations to eaot consider such objectives separately but create new single
gerly look for recognizable sub-populations of customers whmbjective in a subjective manner as noted in [2, 21]. We in-
have similar behavioral patterns and who may be open to tastead use the Evolutionary Local Search Algorithm (ELSA)
[12], which maintains a diverse population of solutions ap-
'According to [3], a Pareto optimal set becomes a non-dominated soproximating the Pareto front in a multi-dimensional objective

lution set when the explored sample space is the same as the entire seargBace Unlike other evolutionary algorithms and their vari-
space. ’
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ants [18, 5, 19, 4], ELSA performs a “local” search in the can be found elsewhere [14, 15]. Figure 1 outlines the ELSA
space of feature subsets by evaluating each individual basedgorithm at a high level of abstraction for feature selection

on both its quality measurements and on the number of simiproblems.

lar individuals in its neighborhood in objective space. ELSA's

bias toward diversity makes it ideal for multi-objective opti-
mization, giving the decision maker a clear picture of Pareto-
optimal solutions from which to choose. Previous research
has demonstrated the effectiveness of ELSA for feature selec
tion in both supervised [14] and unsupervised [8] learning.

The input features selected by the ELSA individual are
used to train an ANN that predicts “buy” or “not buy.” Through
provided examples, an ANN is able to learn typical patterns
of customers in the data set. The trained ANN is tested on
an evaluation set, and the individual is evaluated both on the|
hit rate and the complexity (number of features) of the solu-
tion. The resultis a predictive model that uses only a subset of|
the original features, thus simplifying the model and reducing
the risk of overfitting while maintaining accuracy, shortening
analysis time, and lowering the cost of collecting unnecessary
features in the future.

initialize population of agents, each with energy
while there are alive agents and for T iterations
for each energy source ¢
foreach v (0 .. 1)
B vt (v) & 20E7,
endfor
endfor
foreach agent a
a' + mutate(clone(a))
for each energy source ¢
v + Fitness(a’,c)
AFE + min(v, ES . (v))
Bl (v) « EC, (v) — AE
E, + E, + AE
endfor
Eo + Eo — Ecost
if (Eq>0)
insert o’ into population
Ear < Ea/z
E, «+— E, — E,
elseif (E, < 0)
remove a from population
endif

0/2

endfor
endwhile

In Section 2, we illustrate ELSA in detail. In Section 3,
we show the structure of the ELSA/ANN model and review
the feature subset selection procedure and evaluation mdtigure 1: ELSA pseudo-code. In each iteration, the envi-
rics. We also explain the problem and the data set in detaironment is replenished and then each living agent executes
In Section 4, we present results from experiments with botihe main loop. In sequential implementations, the main loop
the ELSA/ANN and PCA/logit model, and compare them in calls agents in random order to prevent sampling effects. We
terms of hit rate and complexity. stop the algorithm after iterations.

2 Evolutionary Local Selection Algorithm (ELSA)
2.2 Agents, Mutation and Selection

2.1 Local Selection and Algorithm Details Each agent in the population is first initialized with some ran-

ELSA springs from algorithms originally motivated by artifi- dom solution and an initial reservoir ehergy The repre-
cial life models of adaptive agents in ecological environmentsentation of an agent consistsifbits, with each of the bits
[13]. Modeling reproduction in evolving populations of real- indicating whether the corresponding feature is selected or
istic organisms requires that selection, like any other agentot (1 if a feature is selected, 0 otherwise).
process, be locally mediated by the environment in which the Mutation is the main operator used to explore the search
agents are situated. space, and the crossover operator could be added if required

In a standard evolutionary algorithm, an agent is selectedepending on the problem domain. The mutation operator
for reproduction based on how its fithess compares to that alandomly selects one bit of each agent and mutates it. At
other agents. In ELSA, an agent (candidate solution) may dieeach iteration an agent produces a mutated clone to be evalu-
reproduce, or neither based on an endogenous energy lewvatied. Each agent competes for a scare resource, energy, based
that fluctuates via interactions with the environment. The enen its multi-dimensional fithess and the proximity of other
ergy level is compared against a constant selection thresholkjents in the solution space. In the selection part of the al-
for reproduction. By relying on sudiocal selection, ELSA  gorithm, each agent compares its current energy level with a
reduces the communication among agents to a minimum. Thigxed threshold. If its energy is higher thaf, the agent re-
competition and consequent selective pressure is driven byroduces: the mutated clone that was just evaluated becomes
the environment [15]. Further, the local selection scheme nagpart of the population, with half of its parent’s energy. When
urally enforces the diversity of the population, making ELSA an agent runs out of energy, it is killed.
appropriate for multi-objective optimization problems. Ac-  The population size is maintained dynamically over the
cording to a comparative study of EMO algorithms on featureterations and is determined by the carrying capacity of the
selection problems in [15], ELSA showed superior coverageenvironment depending on the costs incurred by the agents
of objective space for feature subsets compared to the Nicheathd on the replenishment of resources, both described below
Pareto Genetic Algorithm (NPGA) [5] and remained compet-[15]. The population size is also independent of the reproduc-
itive in terms of accuracy. A more extensive discussion of thdion thresholdg, which only affects the energy stored by the
algorithm and its application to Pareto optimization problemspopulation at steady-state.
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2.3 Energy Allocation and Replenishment to send mail for very little return. Receivers also have suf-

. . . fered “mail pollution” and the community has lost human and
In each iteration of the algorithm, an agent explores a can-

. i I . Ifth h i
didate solution (the mutated clone). The agent collecis natura resources. the company had a better understanding
) ; : of who their potential customers were, they would know more
from the environment and is taxed with a constant ¢ost;

(E.o < 6) for this “action” The net energy intake of an accurately whom to target, and they could reduce expenses
CO§ .

. ) o g . and the waste of time and effort.
agent is determined by its fitness. This is a function of how . - . . .
In this study, we are specifically interested in predicting

well the candidate solution performs with respect to the crite- . . X X
) . . otential customers who would be interested in buying arecre-
ria being optimized. But the energy also depends on the state.

of the environment. The environment corresponds to the S%a?tlongl vehlple (RV) insurance polléywhlle reducing fea-
i oo : L ure dimensionality. Insurance companies usually have good
of possible values for each of the criteria being optimized.

. . o - -~ socio-demographic data regarding their business area. This
We imagine an energy source for each criterion, divided mtckind of data is easily available even for one who has not
bins corresponding to its values. So, for criterion fitn€ss

. . yet started a business. Suppose that one insurance company
and bin valuev, the environment keeps track of the ENETYY wants to advertise a new insurance policy based on socio-
E¢, .. (v) corresponding to the valuE. = v. Further, the policy

ericrrtonment keeps a count of the number of ageRi®) c_iemo_graphic _d_ata over a certain geographic area. From its
. . . first direct mailing to 5822 prospects, 348 purchased RV in-
hav_mgFC - The energy corr(_esp(_)ndlng to anaction (alter'surance, resulting in a hit rate 88/5822 = 5.97%. Al-
native solution: for criterion . is given by though this is not bad, the company hopes for a higher re-
_ F.(a) sponse rate from another carefully chosen direct mailings from
Fitness(a,c) = m- (1) the topz% of a new set of 4000 potential prospects over the

. ] . . same geographic area. How could it attain a higher hit rate?
Candidate solutions receive energy only inasmuch as the

envirqnment has_sufficient_resource_s; if these are depleted, nP> paia Sets

benefits are available until the environmental resources are

replenished. Thus an agent is rewarded with energy for it§1 our experiment, we use two separate data sets, a training
high fitness values, but also has an interest in finding unporﬁet with 5822 records and an evaluation set with 4000 records.
ulated niches in objective space, where more energy is availlhe training data is used to train ANNs and estimate the ex-
able. The result is a natural bias toward diverse solutions ifected hit rate on the evaluation set. The evaluation data is

the population. used to validate the evolved predictive models. A predictive
When the environment is replenished with energy, eactinodel returns the top% of customers who are most likely to
criterionc is allocated an equal share of energy: buy RV insurance, and the percentage can easily be adjusted
based on the costs and returns of the marketing campaign.
EC ., — PmazEcost ) Based on a list of chosen prospects, the actual hit rate can be
tot C calculated from the evaluation set.

where( is the number of criteria considered. This energy is  Originally, each data set had 85 attributes, containing socio-
apportioned in linear proportion to the values of each fitnesslemographic information (attributes 1-43) and contribution
criterion, so as to bias the population toward more promisingo and ownership of various insurance policies (attributes 44-
areas in objective space. Note that the total replenishmei®5). The socio-demographic data was derived using zip codes
energy that enters the system at each iteratipp,is, - F..s;,  and thus all customers living in areas with the same zip code
which is independent of the population sjzkut proportional have the same socio-demographic attributes. We omitted the
to the parametep,,.,. This way we can maintaip below first feature (customer subtype) mainly because it would ex-
Pmasz ON average, because in each iteration the total energgand search space dramatically with little information gain if
that leaves the system,- E.,.;, cannot be larger than the we represented it as a 41-bit variable. Further we can still ex-

replenishment energy. ploit the information of customer type by recording the fifth
feature (customer main type) as a 10-bit variable. The other
3 ELSA/ANN Model for Customer Targeting :Zitguere((s) agr)e considered continuous and scaled to a common

3.1 Problem Specification

: . . 3.3 ELSA/ANN Model Specification
Direct mailings to potential customers have been one of the

most used approaches to market a new product or servic@.3.1 Structure of the ELSA/ANN Model

However, most receivers are not interested in this “Junk"mallour predictive model is a hybrid model of the ELSA and

and throw it away as trash. The result is that the COMPany N procedures, as shown in Figure 2. ELSA searches for a
wastes its time and money to collect contact information and

3This is one of main tasks in the 2000 ColL challenge [7]. For
2Continuous objective functions are discretized. more information about ColL challenges and the data sets, please refer to
3 http://www.dcs.napier.ac.uk/coil/challenge/



set of feature subsets and passes it to an ANN. The ANN exrained model is then used to rank the potential customers (the
tracts predictive information from each subset and learns theecords in the evaluation set) in descending order by the prob-
patterns using a randomly selected 2/3 of the training dataability of buying RV insurance, as predicted by the ANN. We
The learning algorithm is standard back-propagation of errofinally select the topr% of the prospects and calculate the
[17]. The trained ANN is then evaluated on the remainingactualaccuracy of our model using the actual choices of the
1/3 of the training data, and returns two evaluation metricsevaluation set households.

Foceuracy @NAFeompiesity (described below), to ELSA.

3.3.2 Evaluation Metrics

Training data Feature space
1 1 Bt feture We use two heuristic evaluation criteri,ccuracy aNAFcompiesity
| GenaticAlgorithm (ELSA) | | Subset Training Data to evaluate selected feature subsets. Each objective, after be-
Festure Evaluation ing r?or'malized into 25 intervals to allocate energy, is to be
Subset Metrics maximized by ELSA.
| Atificial Neural Network (ANN) | Artificial Neural ) L
Network (ANN) Foceuracy: The purpose of this objective is to favor fea-
. _ ture sets with a higher hit rate. Each ANN takes a se-
BvautionData s Predicton % lected set of features to learn data patterns and predicts

Figure 2: The ELSA/ANN model. ELSA searches for a good
subset of features and passes it to an ANN. The ANN esti-
mates the quality of each subset and returns two evaluation
metrics to ELSA.

It is important to note that in both the learning and eval-
uation procedures, the ANN uses only the selected features.
Based on the returned metric values, ELSA biases its search
direction to maximize the two objectives. This routine con-
tinues until the maximum number of iterations is attained. All
evaluated solutions over the generations are saved into an off-
line solution set without comparison to previous solutions. In
this way, high-quality solutions are maintained without af-
fecting the evolutionary process.

Among all the evaluated subsets, we choose for further
evaluation the set of candidates that satisfy a minimum hit
rate threshold. With these chosen candidates, we start a more
rigorous selection procedure, 10-fold cross validation. In this
procedure, the training data is divided into 10 non-overlapping
groups. We train an ANN using the first nine groups of train-
ing data and evaluate the trained ANN on the remaining group.
We repeat this procedure until each of the 10 groups has been
used as a test set once. We take the average of the accuracy
measurements over the 10 evaluations and call iingar-
mediateaccuracy. We repeat 10-fold cross validation pro-
cedure five times and average the five intermediate accuracy
estimates. We call this thestimatedaccuracy through the
following sections.

We maintain a superset of the Pareto front containing those
solutions with the highest accuracy at evVéty,picrity level
covered by ELSA. For evaluation purposes, we select a single

which potential customers will actually purchase the
product. We define two different measuréy,...,...,
andF;..,..., for two different experiments. In exper-
iment 1, we select the top 20% of potential customers
in descending order of the probability of purchasing the
product and compute the ratio of the number of actual
customersAC, out of the chosen prospectBC. We
calculateF’! as follows:

accuracy

1 AC
1 —
Faccuracy - 71 TC (3)

accuracy

whereZ! is a normalization constant.

accuracy
In experiment 2, we consider a generalization of exper-
iment 1. We first divide the range of customer selection
percentages into 50 intervals with equal width (2%) and
measure accuracy at the firstintervals only? At each
intervali < m, we select the top2(- )% of potential
customers in descending order of the probability of pur-
chasing the product and compute the ratio of the num-
ber of actual customera,C;, out of the total number of
actual customers in the evaluation dafa. We mul-
tiply the width of interval and sum those values to get
the area under the lift curve ovet intervals. Finally
we divide it bym to get our final metricF. .., q.,- We
formulate it as follows:

F? — iZACia @)

accuracy chcuracy m P TOt

whereT ot = 238, m = 25 andZ?

accuracy

ically derived normalization constant.

is an empir-

“best” solution in terms of both estimated accuracy and com-

plexity. We subjectively decided to pick a solution with the 5This could be justified in terms of costs to handle the chosen prospects
and the expected accuracy gain. As we select more prospects, the expected

minimal ”“mper of features at the,margmal ajccuracy lével. accuracy gain will go down. If the marginal revenue from an additional
Once we decide on the best solution, we train the ANN USprospect is much greater than the marginal cost, however, we could sacri-

ing all the training data with the selected features only. Théice the expected accuracy gain. Information on mailing cost and customer
value was not available in this study.

41f other objective values are equal, we prefer to choose a solution with
small variance. 4




Feompiexity: This objective is aimed at finding parsimo- finally compute the hit rate after selecting top 20% prospects
nious solutions by minimizing the number of selectedbased on the probability of purchasing a policy. In order to

features as follows: get the estimated hit rate of PCA/logit model, we implement
10-fold cross validation on the training set. In the cross val-
7 1 d—1 (5) idation procedure, the scores of the PCs are estimated using
complexity = D-1 each separate training set.

. We set the values for the ELSA parameters in the ELSA/ANN
Note that at least one feature must be used. Other thingg | ELSA/logit models as followsPr(mutation) = 1.0

being .equ.al, we expggt that Iowgr complexity wiII'Iead - =1,000.E,.,; = 0.2, = 0.3, andl' = 2,000. In both
to easier interpretability Of. so[utmns, more consisten models, we select the single solution which has the highest
results, and better generalization. expected hit rate among those solutions with fewer than 10
] features selected. We evaluated each models on the evalua-
4 Experimental Results tion set and our results are summarized in Table 1.

We test our approach in two separate experiments. In the fir§t Training set Evaluation set
experiment, we try to maximize the hit rate when choosing \Model (# Features)| Hit Rate+ s.d || # Correct| Hit Rate
the top of 20% potential customers as in [7]. In the second PCAlogit (22) 12831 0498 109 13 63
experiment, we maximize the area under the lift curve over ELSA/logit (6) 15.73+ 0.203 115 14.38
the first 25 intervals. The best solution from experiment 2 will ELSA/ANN (7) 15.92+ 0.146 120 15.00
maximize the overall accuracy when market managers target

the top 50% of prospects. We note that the best solution fromape 1: Results of experiment 1. The hit rates from the three
experiment 1 is not necessarily the best solution in the morgjtferent models are shown as percentages with standard de-
general case of experiment 2. viation. The column marked “# Correct” shows the number
We implement a principal component analysis (PCA) fol- o actual customers who are included in the chosen top 20%.
lowed by logistic regression (logit) for comparison purposesthe number in parenthesis represents the number of selected

in both experiments. PCAs purpose is to reduce data dimeneatures except for the PCA/logit model, where it represents
sionality, analogously to our feature selection procedure, anghe number of PCs selected.

logistic regression is used for probability estimation similarly

to the ANN procedure. We also implement an intermedi- | terms of the actual hit rate, all three models work very
ate model, ELSA/logit, for comparison purposes only. Theyell. Even the lowest actual hit rate which comes from the
ELSA/logit model differs from ELSA/ANN in the sense that pcaylogit model is almost 2.28 times that of random choice.
the neural networks use only one hidden nbdale use the £ SA/ANN returns the highest actual hit rate. The difference
same criterion to select the final solution of ELSA/logit asi, estimated hit rate between PCA/logit and ELSA/ANN is
in ELSA/ANNS. The motivation for the ELSA/logit model  statistically significant at = 0.05. In Table 1, the difference

is to decompose the accuracy gain from the combined €fy actual hit rate between PCA/logit and ELSA/logit can be
fects of feature selection and non-linear approximation withexp|ained as the accuracy gain that comes from feature selec-
multiple hidden nodes. Therefore, the difference in perforion. In the same way, the difference in actual hit rate between
mance between PCA/logit and ELSA/logit can be attributedz| sa/logit and ELSA/ANN can be explained as the accu-

to feature selec_tion and the difference in pgrformance beracy gain that comes from non-linear approximation. Fea-
tween ELSA/logit and ELSA/ANNS can be attributed to non-yre selection and non-linear approximation contribute about

linear approximation. half of the total accuracy gain each. This improvement of the
. ELSA/ANN model in actual hit rate could make a meaning-
4.1 Experiment 1 ful difference in profit as the number of targeted prospects
In this experiment, we select the top 20% of customers td"'c"€aSes. , ,
measure the hit rate of each solution. The ELSA/ANN model results are also easier to interpret

We implement the PCA/logit model by first applying PCA than those of the PCA/logit model. In the latter, it is not
on the training set. We select 22 PCs — the minimum repossible to determine whether each of the original features

quired to explain more than 90% of the variance in the datés predictive or not. _It is_ also_difficglt to interpret the mean-
set— and use them to reduce the dimensionality of the trainin9 ©f €ach of PCs in high dimensional feature spaces. The

ing set and the evaluation set. In order to compute the progs -SA/ANN model makes it possible to evaluate the predic-
ability of purchasing an RV insurance policy for each recordtive importance of each features. We show the seven features

in the evaluation set, we use the same coefficients acquirdfiat the ELSA/ANN model selects in Table 2.
from logistic regression on the reduced training set. We can AMong those features, we expected at least one of the car
insurance related features to be selected. Further evaluation

SELSA/ANN networks use,/@; hidden nodes where represents the ~ Showed that prospects with at least two insured autos were
number of input features. 5 the most likely RV purchasers. Moped policy ownership is




Feature Type Selected Features 1 —

Demographic Customer main type (average family) 7
Behavioral  Contribution to 3rd party policy, car  °°/ 7 ]
policy, moped policy and fire policy, 08k e |
and number of 3rd party policies and L
social security policies o7k g i
Table 2: Features selected by ELSA/ANN in experiment 1.5 o4 ol i
05F / 7 R

justified by the fact that many people carry their mopeds )
bicycles on the back of RVs. Those two features are select o4} ’ 8
again by the ELSA/logit modél.Using this type of informa-
tion, we were able to build a potentially valuable profile of 03 / .
likely customers [7]. /
The fact that the ELSA/ANN model used only seven fea %% /,
tures for customer prediction makes it possible to save a gre /
. . 01f// — — ELSA/ANN H
amount of money in data collection and database manac / — - ELSAlLogit
ment aspects. Based on this, market managers do notnee e — PCALogt
collect or analyze other information except those sevenfe ° 01 02 03 Pr;’b‘;mm RO L B
tures. This huge reduction in data dimension can reduce man-
agement cost dramatically through reduced storage requirgsigyre 3: Lift curves of three models that maximize the hit
ments §6/93 ~ 92.5%) and through the reduced labor and 41e when targeting the top 20% of prospects.
communication costs for data collection, transfer, and analy-
sis. By contrast, the PCA/logit model needs the whole featur % of Selected

setto extract PCs. _ _ [ Model (N. features)| 10 | 20 | 30 | 40 | 50
We also compare the lift curves of the three models. Fig PCAlogit (22) 3361 4581 563 6851 786

ure 3 shows the cumulative hit rate over the1dpof prospects ELSA/logit (46) 203 462 605! 706! 79.8
(2 < z < 100). As expected, our ELSA/ANN model fol- ELSA/ANN (44) 204|483 | 601! 69.7 | 807
lowed by ELSA/logit is the best when marketing around th - - - - -

top 20% of prospects. However, the performance of ELSA/ANNh e 3: Summary of experiment 2. The cumulative hit rates
and ELSA/logit over _aII other_ target percentages was WOrsgy the three models are shown over up to the top 50% of
than that of PCA/logit. This is understandable because OUSrospects. In practice, we optimize over the first 25 inter-

solution is specifically designed to optimize at the top 20%, 5|5 which have the same width, 2%, to approximate the area

of prospects while PCA/logit is not designed for specific se~,4er the lift curve.

lection points. This observation leads us to do the second ex-
perimentin order to improve the performance of ELSA/ANN

rtion of hit r

Pr
~

model over all selection points. estimates, we choose a solution that has the highest estimated
accuracy with less than half of the original features in both
4.2 Experiment 2 models. We evaluate the three models on the evaluation set

and summarize the results in Table 3 and in Figure 4.

In this experiment, we search for the best solution that maxi- The ELSA/ANN model works better than PCA/logit and
mizes the overall accuracy up to the top 50% of potential CUSE| SA/logit over the targeting range between 15% and 50%.
tomers. ELSA/ANN and ELSA/logit models are adjusted to|n particular, ELSA/ANN is best at 15%, 20%, 25%, and
maximize the overall area under the lift curve over the same oo, of targeted customers, and approximately equal to the
intervals. In practice, we optimize over the first 25 intervalspest at 30-45%. The overall performance of ELSA/logit is
which have the same width, 2%, to approximate the area umsetter than that of PCA/logit. We attribute this to the fact
der the lift curve. that solutions from both ELSA models exclude many irrele-

Because this new experimentis computationally much moggnt features. PCA/logit, however, is competitive for target-

expensive, we take a slightly different approach to choose thgyg more than 50% of the customers, since ELSA/ANN and

cross validation estimates of all solutions and set the values e note that the well-established parsimony of the mod-
of the ELSA parameters identically with the previous experi-e|s selected by ELSA/ANN in experiment 1 is largely lost
ment exceppq. = 200 andl’ = 500. Based on the accuracy jn experiment 2. We attribute this partially to the fact that
different selection points may have related but different opti-
mal subsets of features. Correlation among features seems to

"The other four features selected by the ELSA/logit model are: contribu-
tion to bicycle and fire policy, and number of trailer and lorry policies.
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for additional customers are considered. We could also con-
sider budget constraints and minimum/maximum campaign
sizes. This way the number of targeted customers would be
determined inside an optimization routine to maximize the

Proportion of hit records
o o o o o o
w = (2} (=2} ~ (=]
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Figure 4: Lift curves of three models that maximize the area [2] C. A. C. Coello.

under lift curve when targeting up to top 50% of prospects.

contribute to the loss of parsimony. For instance, a particu-

lar variable related to insurance policy ownership that is part [3]

of the optimal subset at a 20% selection rate could easily be
replaced by a different, correlated feature at 30%. Even so,
the ELSA/ANN model is still superior to PCA/logit model in
terms of the parsimony of selected features since the PCA/logit
model needs the whole feature set to construct PCs.

S expected profit of the marketing campaign.
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