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Abstract- In an increasingly competitive marketplace, one
of the most interesting and challenging problems is how
to identify and profile customers who are most likely to be
interested in new products or services. At the same time,
minimizing the number of variables used in the predic-
tion task is important with large databases. In this pa-
per we consider a novel application of evolutionary multi-
objective algorithms for customer targeting. Evolution-
ary algorithms are considered effective in solving multi-
objective problems because of their inherent parallelism.
We use ELSA, an evolutionary local selection algorithm
that maintains a diverse population of solutions approxi-
mating the Pareto front in a multi-dimensional objective
space. We use artificial neural networks (ANNs) for cus-
tomer prediction and ELSA to search for promising sub-
sets of features. Our results on a real data set show that
our approach is easier to interpret and more accurate than
the traditional method used in marketing.

1 Introduction

In the last decade, evolutionary multi-objective (EMO) algo-
rithms have been applied to solve many engineering and sci-
entific problems [20, 10, 16, 3]. In multi-objective optimiza-
tion problems, we expect a set of optimal solutions rather
than a single optimal solution because each solution should
be evaluated on multiple objectives and often such objectives
are in conflict with each other. In particular, we are interested
in finding a non-dominated solution set or aParetooptimal
set.1 We note that many business-related problems can also
be modeled using the EMO framework. The multi-objective
nature of the decision making process in various business ap-
plications makes EMO algorithms ideal to provide human de-
cision makers with a set ofgoodcandidate solutions, and for
exploring the trade-offs among the various objectives.

For instance, most market managers realize that the tra-
ditional, one-to-one customer relationships have largely dis-
appeared and that consumer behavior has become infinitely
more volatile and difficult to predict. Rapidly changing de-
mographic patterns force more and more organizations to ea-
gerly look for recognizable sub-populations of customers who
have similar behavioral patterns and who may be open to tar-

1According to [3], a Pareto optimal set becomes a non-dominated so-
lution set when the explored sample space is the same as the entire search
space.

geted marketing messages to maintain their competitive mar-
ket edge [1]. At the same time, with the size of databases
growing rapidly, data dimensionality reduction becomes an-
other important factor in building a prediction model that is
fast, easy to interpret, cost effective, and generalizes well to
unseen cases. Principal Component Analysis (PCA) [6] and
logistic regression have been among the most popular mod-
els in the marketing industry for data reduction and predic-
tion, respectively. In this study, we propose a new approach
that combines EMO algorithms for data reduction and artifi-
cial neural networks (ANNs) for the customer prediction task.
Our approach is different from previous studies on direct mar-
keting in the sense that they did not consider either multiple
objectives [11] or data reduction [1].

Data reduction is performed via feature selection in our
approach. Feature selection is defined as the process of choos-
ing a subset of the original predictive variables by eliminating
redundant features and those with little or no predictive infor-
mation. If we extract as much information as possible from
a given data set while using the smallest number of features,
we can not only save a great amount of computing time and
cost, but often build a model that generalizes better to unseen
points. Feature selection can also significantly improve the
comprehensibility of the resulting classifier models. Even a
complicated model — such as a neural network — can be
more easily understood if constructed from only a few vari-
ables. In marketing applications it can also be useful to com-
municate the set of good predictive variables to the sales staff,
giving them rules of thumb for targeting potential customers.
We adopt the wrapper model [9] of feature selection which re-
quires two components: a search algorithm that explores the
combinatorial space of feature subsets, and one or more cri-
terion functions that evaluate the quality of each subset based
directly on the predictive model.

An evolutionary algorithm is used to search through the
possible combinations of features, and two quality measure-
ments, hit rate (which should be maximized) and complexity
(which should be minimized), are used to evaluate the qual-
ity of each feature subset. Many popular EMO algorithms do
not consider such objectives separately but create new single
objective in a subjective manner as noted in [2, 21]. We in-
stead use the Evolutionary Local Search Algorithm (ELSA)
[12], which maintains a diverse population of solutions ap-
proximating the Pareto front in a multi-dimensional objective
space. Unlike other evolutionary algorithms and their vari-
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ants [18, 5, 19, 4], ELSA performs a “local” search in the
space of feature subsets by evaluating each individual based
on both its quality measurements and on the number of simi-
lar individuals in its neighborhood in objective space. ELSA’s
bias toward diversity makes it ideal for multi-objective opti-
mization, giving the decision maker a clear picture of Pareto-
optimal solutions from which to choose. Previous research
has demonstrated the effectiveness of ELSA for feature selec-
tion in both supervised [14] and unsupervised [8] learning.

The input features selected by the ELSA individual are
used to train an ANN that predicts “buy” or “not buy.” Through
provided examples, an ANN is able to learn typical patterns
of customers in the data set. The trained ANN is tested on
an evaluation set, and the individual is evaluated both on the
hit rate and the complexity (number of features) of the solu-
tion. The result is a predictive model that uses only a subset of
the original features, thus simplifying the model and reducing
the risk of overfitting while maintaining accuracy, shortening
analysis time, and lowering the cost of collecting unnecessary
features in the future.

In Section 2, we illustrate ELSA in detail. In Section 3,
we show the structure of the ELSA/ANN model and review
the feature subset selection procedure and evaluation met-
rics. We also explain the problem and the data set in detail.
In Section 4, we present results from experiments with both
the ELSA/ANN and PCA/logit model, and compare them in
terms of hit rate and complexity.

2 Evolutionary Local Selection Algorithm (ELSA)

2.1 Local Selection and Algorithm Details

ELSA springs from algorithms originally motivated by artifi-
cial life models of adaptive agents in ecological environments
[13]. Modeling reproduction in evolving populations of real-
istic organisms requires that selection, like any other agent
process, be locally mediated by the environment in which the
agents are situated.

In a standard evolutionary algorithm, an agent is selected
for reproduction based on how its fitness compares to that of
other agents. In ELSA, an agent (candidate solution) may die,
reproduce, or neither based on an endogenous energy level
that fluctuates via interactions with the environment. The en-
ergy level is compared against a constant selection threshold
for reproduction. By relying on suchlocal selection, ELSA
reduces the communication among agents to a minimum. The
competition and consequent selective pressure is driven by
the environment [15]. Further, the local selection scheme nat-
urally enforces the diversity of the population, making ELSA
appropriate for multi-objective optimization problems. Ac-
cording to a comparative study of EMO algorithms on feature
selection problems in [15], ELSA showed superior coverage
of objective space for feature subsets compared to the Niched
Pareto Genetic Algorithm (NPGA) [5] and remained compet-
itive in terms of accuracy. A more extensive discussion of the
algorithm and its application to Pareto optimization problems

can be found elsewhere [14, 15]. Figure 1 outlines the ELSA
algorithm at a high level of abstraction for feature selection
problems.

initialize population of agents, each with energy �=2
while there are alive agents and for T iterations

for each energy source c
for each v (0 .. 1)

Ec

envt
(v) 2vEc

tot

endfor
endfor
for each agent a

a0
 mutate(clone(a))

for each energy source c
v  Fitness(a0; c)
�E  min(v;Ec

envt
(v))

Ec

envt
(v) Ec

envt
(v)��E

Ea  Ea +�E
endfor
Ea  Ea � Ecost

if ( Ea > �)
insert a0 into population
E
a0  Ea=2

Ea  Ea � E
a0

else if ( Ea < 0)
remove a from population

endif
endfor

endwhile

Figure 1: ELSA pseudo-code. In each iteration, the envi-
ronment is replenished and then each living agent executes
the main loop. In sequential implementations, the main loop
calls agents in random order to prevent sampling effects. We
stop the algorithm afterT iterations.

2.2 Agents, Mutation and Selection

Each agent in the population is first initialized with some ran-
dom solution and an initial reservoir ofenergy. The repre-
sentation of an agent consists ofD bits, with each of the bits
indicating whether the corresponding feature is selected or
not (1 if a feature is selected, 0 otherwise).

Mutation is the main operator used to explore the search
space, and the crossover operator could be added if required
depending on the problem domain. The mutation operator
randomly selects one bit of each agent and mutates it. At
each iteration an agent produces a mutated clone to be evalu-
ated. Each agent competes for a scare resource, energy, based
on its multi-dimensional fitness and the proximity of other
agents in the solution space. In the selection part of the al-
gorithm, each agent compares its current energy level with a
fixed threshold�. If its energy is higher than�, the agent re-
produces: the mutated clone that was just evaluated becomes
part of the population, with half of its parent’s energy. When
an agent runs out of energy, it is killed.

The population size is maintained dynamically over the
iterations and is determined by the carrying capacity of the
environment depending on the costs incurred by the agents
and on the replenishment of resources, both described below
[15]. The population size is also independent of the reproduc-
tion threshold,�, which only affects the energy stored by the
population at steady-state.
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2.3 Energy Allocation and Replenishment

In each iteration of the algorithm, an agent explores a can-
didate solution (the mutated clone). The agent collects�E
from the environment and is taxed with a constant costEcost

(Ecost < �) for this “action.” The net energy intake of an
agent is determined by its fitness. This is a function of how
well the candidate solution performs with respect to the crite-
ria being optimized. But the energy also depends on the state
of the environment. The environment corresponds to the set
of possible values for each of the criteria being optimized.2

We imagine an energy source for each criterion, divided into
bins corresponding to its values. So, for criterion fitnessFc
and bin valuev, the environment keeps track of the energy
Ec
envt(v) corresponding to the valueFc = v. Further, the

environment keeps a count of the number of agentsPc(v)
havingFc = v. The energy corresponding to an action (alter-
native solution)a for criterionFc is given by

Fitness(a; c) =
Fc(a)

Pc(Fc(a))
: (1)

Candidate solutions receive energy only inasmuch as the
environment has sufficient resources; if these are depleted, no
benefits are available until the environmental resources are
replenished. Thus an agent is rewarded with energy for its
high fitness values, but also has an interest in finding unpop-
ulated niches in objective space, where more energy is avail-
able. The result is a natural bias toward diverse solutions in
the population.

When the environment is replenished with energy, each
criterionc is allocated an equal share of energy:

Ec
tot =

pmaxEcost

C
(2)

whereC is the number of criteria considered. This energy is
apportioned in linear proportion to the values of each fitness
criterion, so as to bias the population toward more promising
areas in objective space. Note that the total replenishment
energy that enters the system at each iteration ispmax �Ecost,
which is independent of the population sizep but proportional
to the parameterpmax. This way we can maintainp below
pmax on average, because in each iteration the total energy
that leaves the system,p � Ecost, cannot be larger than the
replenishment energy.

3 ELSA/ANN Model for Customer Targeting

3.1 Problem Specification

Direct mailings to potential customers have been one of the
most used approaches to market a new product or service.
However, most receivers are not interested in this “junk” mail
and throw it away as trash. The result is that the company
wastes its time and money to collect contact information and

2Continuous objective functions are discretized.

to send mail for very little return. Receivers also have suf-
fered “mail pollution” and the community has lost human and
natural resources. If the company had a better understanding
of who their potential customers were, they would know more
accurately whom to target, and they could reduce expenses
and the waste of time and effort.

In this study, we are specifically interested in predicting
potential customers who would be interested in buying a recre-
ational vehicle (RV) insurance policy3 while reducing fea-
ture dimensionality. Insurance companies usually have good
socio-demographic data regarding their business area. This
kind of data is easily available even for one who has not
yet started a business. Suppose that one insurance company
wants to advertise a new insurance policy based on socio-
demographic data over a certain geographic area. From its
first direct mailing to 5822 prospects, 348 purchased RV in-
surance, resulting in a hit rate of348=5822 = 5:97%. Al-
though this is not bad, the company hopes for a higher re-
sponse rate from another carefully chosen direct mailings from
the topx% of a new set of 4000 potential prospects over the
same geographic area. How could it attain a higher hit rate?

3.2 Data Sets

In our experiment, we use two separate data sets, a training
set with 5822 records and an evaluation set with 4000 records.
The training data is used to train ANNs and estimate the ex-
pected hit rate on the evaluation set. The evaluation data is
used to validate the evolved predictive models. A predictive
model returns the topx% of customers who are most likely to
buy RV insurance, and the percentage can easily be adjusted
based on the costs and returns of the marketing campaign.
Based on a list of chosen prospects, the actual hit rate can be
calculated from the evaluation set.

Originally, each data set had 85 attributes, containing socio-
demographic information (attributes 1-43) and contribution
to and ownership of various insurance policies (attributes 44-
85). The socio-demographic data was derived using zip codes
and thus all customers living in areas with the same zip code
have the same socio-demographic attributes. We omitted the
first feature (customer subtype) mainly because it would ex-
pand search space dramatically with little information gain if
we represented it as a 41-bit variable. Further we can still ex-
ploit the information of customer type by recording the fifth
feature (customer main type) as a 10-bit variable. The other
features are considered continuous and scaled to a common
range (0–9).

3.3 ELSA/ANN Model Specification

3.3.1 Structure of the ELSA/ANN Model

Our predictive model is a hybrid model of the ELSA and
ANN procedures, as shown in Figure 2. ELSA searches for a

3This is one of main tasks in the 2000 CoIL challenge [7]. For
more information about CoIL challenges and the data sets, please refer to
http://www.dcs.napier.ac.uk/coil/challenge/ .
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set of feature subsets and passes it to an ANN. The ANN ex-
tracts predictive information from each subset and learns the
patterns using a randomly selected 2/3 of the training data.
The learning algorithm is standard back-propagation of error
[17]. The trained ANN is then evaluated on the remaining
1/3 of the training data, and returns two evaluation metrics,
Faccuracy andFcomplexity (described below), to ELSA.

Genetic Algorithm (ELSA)

Feature
Subset

Artificial Neural

Feature space

Evaluation

Best feature

Training data

subset Training Data

Evaluation Data
Prospects Prediction

Accuracy

Estimated

Metrics

Artificial Neural Network (ANN)
Network (ANN)

Figure 2: The ELSA/ANN model. ELSA searches for a good
subset of features and passes it to an ANN. The ANN esti-
mates the quality of each subset and returns two evaluation
metrics to ELSA.

It is important to note that in both the learning and eval-
uation procedures, the ANN uses only the selected features.
Based on the returned metric values, ELSA biases its search
direction to maximize the two objectives. This routine con-
tinues until the maximum number of iterations is attained. All
evaluated solutions over the generations are saved into an off-
line solution set without comparison to previous solutions. In
this way, high-quality solutions are maintained without af-
fecting the evolutionary process.

Among all the evaluated subsets, we choose for further
evaluation the set of candidates that satisfy a minimum hit
rate threshold. With these chosen candidates, we start a more
rigorous selection procedure, 10-fold cross validation. In this
procedure, the training data is divided into 10 non-overlapping
groups. We train an ANN using the first nine groups of train-
ing data and evaluate the trained ANN on the remaining group.
We repeat this procedure until each of the 10 groups has been
used as a test set once. We take the average of the accuracy
measurements over the 10 evaluations and call it aninter-
mediateaccuracy. We repeat 10-fold cross validation pro-
cedure five times and average the five intermediate accuracy
estimates. We call this theestimatedaccuracy through the
following sections.

We maintain a superset of the Pareto front containing those
solutions with the highest accuracy at everyFcomplexity level
covered by ELSA. For evaluation purposes, we select a single
“best” solution in terms of both estimated accuracy and com-
plexity. We subjectively decided to pick a solution with the
minimal number of features at the marginal accuracy level.4

Once we decide on the best solution, we train the ANN us-
ing all the training data with the selected features only. The

4If other objective values are equal, we prefer to choose a solution with
small variance.

trained model is then used to rank the potential customers (the
records in the evaluation set) in descending order by the prob-
ability of buying RV insurance, as predicted by the ANN. We
finally select the topx% of the prospects and calculate the
actualaccuracy of our model using the actual choices of the
evaluation set households.

3.3.2 Evaluation Metrics

We use two heuristic evaluation criteria,Faccuracy andFcomplexity ,
to evaluate selected feature subsets. Each objective, after be-
ing normalized into 25 intervals to allocate energy, is to be
maximized by ELSA.

Faccuracy : The purpose of this objective is to favor fea-
ture sets with a higher hit rate. Each ANN takes a se-
lected set of features to learn data patterns and predicts
which potential customers will actually purchase the
product. We define two different measures,F 1

accuracy

andF 2
accuracy for two different experiments. In exper-

iment 1, we select the top 20% of potential customers
in descending order of the probability of purchasing the
product and compute the ratio of the number of actual
customers,AC, out of the chosen prospects,TC. We
calculateF 1

accuracy as follows:

F 1
accuracy =

1

Z1
accuracy

AC

TC
(3)

whereZ1
accuracy is a normalization constant.

In experiment 2, we consider a generalization of exper-
iment 1. We first divide the range of customer selection
percentages into 50 intervals with equal width (2%) and
measure accuracy at the firstm intervals only.5 At each
interval i � m, we select the top (2 � i)% of potential
customers in descending order of the probability of pur-
chasing the product and compute the ratio of the num-
ber of actual customers,ACi, out of the total number of
actual customers in the evaluation data,Tot. We mul-
tiply the width of interval and sum those values to get
the area under the lift curve overm intervals. Finally
we divide it bym to get our final metric,F 2

accuracy. We
formulate it as follows:

F 2
accuracy =

1

Z2
accuracy

1

m

mX

i=1

ACi

Tot
� 2 (4)

whereTot = 238, m = 25 andZ2
accuracy is an empir-

ically derived normalization constant.

5This could be justified in terms of costs to handle the chosen prospects
and the expected accuracy gain. As we select more prospects, the expected
accuracy gain will go down. If the marginal revenue from an additional
prospect is much greater than the marginal cost, however, we could sacri-
fice the expected accuracy gain. Information on mailing cost and customer
value was not available in this study.
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Fcomplexity : This objective is aimed at finding parsimo-
nious solutions by minimizing the number of selected
features as follows:

Fcomplexity = 1�
d� 1

D � 1
: (5)

Note that at least one feature must be used. Other things
being equal, we expect that lower complexity will lead
to easier interpretability of solutions, more consistent
results, and better generalization.

4 Experimental Results

We test our approach in two separate experiments. In the first
experiment, we try to maximize the hit rate when choosing
the top of 20% potential customers as in [7]. In the second
experiment, we maximize the area under the lift curve over
the first 25 intervals. The best solution from experiment 2 will
maximize the overall accuracy when market managers target
the top 50% of prospects. We note that the best solution from
experiment 1 is not necessarily the best solution in the more
general case of experiment 2.

We implement a principal component analysis (PCA) fol-
lowed by logistic regression (logit) for comparison purposes
in both experiments. PCA’s purpose is to reduce data dimen-
sionality, analogously to our feature selection procedure, and
logistic regression is used for probability estimation similarly
to the ANN procedure. We also implement an intermedi-
ate model, ELSA/logit, for comparison purposes only. The
ELSA/logit model differs from ELSA/ANN in the sense that
the neural networks use only one hidden node.6 We use the
same criterion to select the final solution of ELSA/logit as
in ELSA/ANNs. The motivation for the ELSA/logit model
is to decompose the accuracy gain from the combined ef-
fects of feature selection and non-linear approximation with
multiple hidden nodes. Therefore, the difference in perfor-
mance between PCA/logit and ELSA/logit can be attributed
to feature selection and the difference in performance be-
tween ELSA/logit and ELSA/ANNs can be attributed to non-
linear approximation.

4.1 Experiment 1

In this experiment, we select the top 20% of customers to
measure the hit rate of each solution.

We implement the PCA/logit model by first applying PCA
on the training set. We select 22 PCs — the minimum re-
quired to explain more than 90% of the variance in the data
set — and use them to reduce the dimensionality of the train-
ing set and the evaluation set. In order to compute the prob-
ability of purchasing an RV insurance policy for each record
in the evaluation set, we use the same coefficients acquired
from logistic regression on the reduced training set. We can

6ELSA/ANN networks usepnf hidden nodes wherenf represents the
number of input features.

finally compute the hit rate after selecting top 20% prospects
based on the probability of purchasing a policy. In order to
get the estimated hit rate of PCA/logit model, we implement
10-fold cross validation on the training set. In the cross val-
idation procedure, the scores of the PCs are estimated using
each separate training set.

We set the values for the ELSA parameters in the ELSA/ANN
and ELSA/logit models as follows:Pr(mutation) = 1.0,
pmax = 1,000,Ecost = 0.2,� = 0.3, andT = 2,000. In both
models, we select the single solution which has the highest
expected hit rate among those solutions with fewer than 10
features selected. We evaluated each models on the evalua-
tion set and our results are summarized in Table 1.

Training set Evaluation set
Model (# Features) Hit Rate� s.d # Correct Hit Rate

PCA/logit (22) 12.83� 0.498 109 13.63
ELSA/logit (6) 15.73� 0.203 115 14.38
ELSA/ANN (7) 15.92� 0.146 120 15.00

Table 1: Results of experiment 1. The hit rates from the three
different models are shown as percentages with standard de-
viation. The column marked “# Correct” shows the number
of actual customers who are included in the chosen top 20%.
The number in parenthesis represents the number of selected
features except for the PCA/logit model, where it represents
the number of PCs selected.

In terms of the actual hit rate, all three models work very
well. Even the lowest actual hit rate which comes from the
PCA/logit model is almost 2.28 times that of random choice.
ELSA/ANN returns the highest actual hit rate. The difference
in estimated hit rate between PCA/logit and ELSA/ANN is
statistically significant at� = 0.05. In Table 1, the difference
in actual hit rate between PCA/logit and ELSA/logit can be
explained as the accuracy gain that comes from feature selec-
tion. In the same way, the difference in actual hit rate between
ELSA/logit and ELSA/ANN can be explained as the accu-
racy gain that comes from non-linear approximation. Fea-
ture selection and non-linear approximation contribute about
half of the total accuracy gain each. This improvement of the
ELSA/ANN model in actual hit rate could make a meaning-
ful difference in profit as the number of targeted prospects
increases.

The ELSA/ANN model results are also easier to interpret
than those of the PCA/logit model. In the latter, it is not
possible to determine whether each of the original features
is predictive or not. It is also difficult to interpret the mean-
ing of each of PCs in high dimensional feature spaces. The
ELSA/ANN model makes it possible to evaluate the predic-
tive importance of each features. We show the seven features
that the ELSA/ANN model selects in Table 2.

Among those features, we expected at least one of the car
insurance related features to be selected. Further evaluation
showed that prospects with at least two insured autos were
the most likely RV purchasers. Moped policy ownership is
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Feature Type Selected Features

Demographic Customer main type (average family)
Behavioral Contribution to 3rd party policy, car

policy, moped policy and fire policy,
and number of 3rd party policies and
social security policies

Table 2: Features selected by ELSA/ANN in experiment 1.

justified by the fact that many people carry their mopeds or
bicycles on the back of RVs. Those two features are selected
again by the ELSA/logit model.7 Using this type of informa-
tion, we were able to build a potentially valuable profile of
likely customers [7].

The fact that the ELSA/ANN model used only seven fea-
tures for customer prediction makes it possible to save a great
amount of money in data collection and database manage-
ment aspects. Based on this, market managers do not need to
collect or analyze other information except those seven fea-
tures. This huge reduction in data dimension can reduce man-
agement cost dramatically through reduced storage require-
ments (86=93 � 92:5%) and through the reduced labor and
communication costs for data collection, transfer, and analy-
sis. By contrast, the PCA/logit model needs the whole feature
set to extract PCs.

We also compare the lift curves of the three models. Fig-
ure 3 shows the cumulative hit rate over the topx% of prospects
(2 � x � 100). As expected, our ELSA/ANN model fol-
lowed by ELSA/logit is the best when marketing around the
top 20% of prospects. However, the performance of ELSA/ANN
and ELSA/logit over all other target percentages was worse
than that of PCA/logit. This is understandable because our
solution is specifically designed to optimize at the top 20%
of prospects while PCA/logit is not designed for specific se-
lection points. This observation leads us to do the second ex-
periment in order to improve the performance of ELSA/ANN
model over all selection points.

4.2 Experiment 2

In this experiment, we search for the best solution that maxi-
mizes the overall accuracy up to the top 50% of potential cus-
tomers. ELSA/ANN and ELSA/logit models are adjusted to
maximize the overall area under the lift curve over the same
intervals. In practice, we optimize over the first 25 intervals
which have the same width, 2%, to approximate the area un-
der the lift curve.

Because this new experiment is computationally much more
expensive, we take a slightly different approach to choose the
final solutions of ELSA/ANN and ELSA/logit. We use 2-fold
cross validation estimates of all solutions and set the values
of the ELSA parameters identically with the previous experi-
ment exceptpmax = 200 andT = 500. Based on the accuracy

7The other four features selected by the ELSA/logit model are: contribu-
tion to bicycle and fire policy, and number of trailer and lorry policies.
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Figure 3: Lift curves of three models that maximize the hit
rate when targeting the top 20% of prospects.

% of Selected
Model (Nr. features) 10 20 30 40 50

PCA/logit (22) 33.6 45.8 56.3 68.5 78.6
ELSA/logit (46) 30.3 46.2 60.5 70.6 79.8
ELSA/ANN (44) 29.4 48.3 60.1 69.7 80.7

Table 3: Summary of experiment 2. The cumulative hit rates
of the three models are shown over up to the top 50% of
prospects. In practice, we optimize over the first 25 inter-
vals which have the same width, 2%, to approximate the area
under the lift curve.

estimates, we choose a solution that has the highest estimated
accuracy with less than half of the original features in both
models. We evaluate the three models on the evaluation set
and summarize the results in Table 3 and in Figure 4.

The ELSA/ANN model works better than PCA/logit and
ELSA/logit over the targeting range between 15% and 50%.
In particular, ELSA/ANN is best at 15%, 20%, 25%, and
50% of targeted customers, and approximately equal to the
best at 30-45%. The overall performance of ELSA/logit is
better than that of PCA/logit. We attribute this to the fact
that solutions from both ELSA models exclude many irrele-
vant features. PCA/logit, however, is competitive for target-
ing more than 50% of the customers, since ELSA/ANN and
ELSA/logit do not optimize over these ranges.

We note that the well-established parsimony of the mod-
els selected by ELSA/ANN in experiment 1 is largely lost
in experiment 2. We attribute this partially to the fact that
different selection points may have related but different opti-
mal subsets of features. Correlation among features seems to
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Figure 4: Lift curves of three models that maximize the area
under lift curve when targeting up to top 50% of prospects.

contribute to the loss of parsimony. For instance, a particu-
lar variable related to insurance policy ownership that is part
of the optimal subset at a 20% selection rate could easily be
replaced by a different, correlated feature at 30%. Even so,
the ELSA/ANN model is still superior to PCA/logit model in
terms of the parsimony of selected features since the PCA/logit
model needs the whole feature set to construct PCs.

5 Conclusion

In this paper, we presented a novel application of the multi-
objective evolutionary algorithms for customer targeting. We
used ELSA to search for possible combinations of features
and an ANN to score customers based on the probability that
they will buy the new service or product. ELSA avoids com-
putationally expensive global comparisons among agents with
a well-established environment corresponding to the set of
possible values for each of the criteria. ELSA also avoids the
limitations of weighted sum methods which combine mul-
tiple objectives in a subjective manner. The overall perfor-
mance of ELSA/ANN in terms of accuracy was superior to
the traditional method, PCA/logit, and an intermediate model,
ELSA/logit. Further, the final output of the ELSA/ANN model
was much easier to interpret because only a small number of
features are used.

In future work we want to investigate how more general
objectives affect the parsimony of selected features. We also
would like to compare the performance of ELSA on the cus-
tomer targeting task with other EMO algorithms. Further,
we will consider a marketing campaign in a more realistic
environment where various types of costs and net revenue

for additional customers are considered. We could also con-
sider budget constraints and minimum/maximum campaign
sizes. This way the number of targeted customers would be
determined inside an optimization routine to maximize the
expected profit of the marketing campaign.
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