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Abstract. Analysis of aggregate and individual Web requests shows that Page-
Rank is a poor predictor of traffic. We use empirical data to characterize proper-
ties of Web traffic not reproduced by Markovian models, including both aggregate
statistics such as page and link traffic, and individual statistics such as entropy and
session size. As no current model reconciles all of these observations, we present
an agent-based model that explains them through realistic browsing behaviors: (1)
revisiting bookmarked pages; (2) backtracking; and (3) seeking out novel pages
of topical interest. The resulting model can reproduce the behaviors we observe
in empirical data, especially heterogeneous session lengths, reconciling the nar-
rowly focused browsing patterns of individual users with the extreme variance
in aggregate traffic measurements. We can thereby identify a few salient features
that are necessary and sufficient to interpret Web traffic data. Beyond the descrip-
tive and explanatory power of our model, these results may lead to improvements
in Web applications such as search and crawling.

1 Introduction

PageRank [6] has been a remarkably influential model of Web browsing, framing it as
random surfing activity. The measurement of large volumes of Web traffic enables sys-
tematic testing of PageRank’s underlying assumptions [22]. Traffic patterns aggregated
across users reveal that some of its key assumptions—uniform random distributions
for walk and teleportation—are widely violated, making PageRank a poor predictor of
traffic, despite its standard interpretation as a stationary visit frequency. This raises the
question of how to design a more accurate navigation model. We expand on our previ-
ous empirical analysis [22, 20] by considering also individual traffic patterns [15]. Our
results provide further evidence for the limits of Markovian traffic models such as Page-
Rank and suggest the need for an agent-based model with features such as memory and
topicality that can account for both individual and aggregate traffic patterns.

Models of user browsing have important practical applications. Traffic clearly has
a direct impact on the financial success of companies and institutions. Indirectly, un-
derstanding traffic patterns aids in advertising, both to predict revenues and establish
rates [12]. Second, realistic models of Web navigation can guide the behavior of crawl-
ing algorithms, improving search engines’ coverage of important sites [9, 24]. Finally,
improved traffic models may lead to enhanced ranking algorithms [6, 28, 18].



After background material, we describe in § 3 a data set collected through a field
study of over 1,000 users at Indiana University. In § 4 we introduce an agent-based
navigation model, ABC, with three key, realistic ingredients: (1) bookmarks used as
teleportation targets, defining boundaries between sessions and capturing the diversity
of starting pages; (2) a back button is used to model branching observed in empirical
traffic; and (3) topical interests drive an agent’s decision to continue browsing, leading
to diverse session sizes. The model also considers the topical locality of the Web, so that
interesting pages tend to link to other such pages. In § 5 we compare the traffic generated
by our model with measurements of both aggregate and individual Web traffic data.
These results allow us to identify features that are necessary and sufficient to interpret
Web traffic data.

2 Background

Empirical studies of Web traffic have most often involved the analysis of server logs,
with scales ranging from small samples of users from a few selected servers [17] to large
groups from the logs of large organizations [15]. This approach has the advantage of
distinguishing users by IP address (even if they may be anonymized), thus capturing in-
dividual traffic patterns [15]. However, the choice of target server will bias both the user
sample and the part of the Web graph observed. Browser toolbars offer another source
of traffic data; these gather information based on the activity of many users. While tool-
bars involve a larger population, their data are still biased toward users who opt to install
such software. Moreover, their data are not generally available to researchers. Adar et
al. [1] used this approach to study patterns of page revisitation. A related approach is to
have a select panel of users install tracking software, which can eliminate many biases
but incur experimental costs. Such an approach has been used to describe exploratory
browsing [4]. These studies did not propose models to explain observed traffic patterns.

Our own study measures traffic directly through packet capture, an approach adopted
by Qiu et al. [27], who used captured HTTP packet traces from the UCLA CS depart-
ment to study the influence of search engines on browsing. We use a larger sample
of residential users, reducing the biases attendant to a workplace study of technical
users. We focus strongly on the analysis of browsing sessions. A common assumption
is that long pauses correspond to breaks between sessions, leading many to rely on
timeouts as a way of defining sessions. Flaws in this technique motivated our defini-
tion of time-independent logical sessions, based on the reconstruction of session trees
rooted at pages requested without a referrer [20]. One goal of our model is to explain
the broad distributions of size and depth for these logical sessions. The role of page
content in driving users’ browsing patterns has received relatively little attention, with
the notable exception of a study of the correlation between changes in page content and
revisit patterns [2].

Under a basic model of Web navigation, users perform a random walk through pages
in the Web graph. PageRank [6] is a random walk modified by teleportation, which
uses uniformly random starting points to model how users start new sessions. This
Markovian process has no memory or backtracking and no notion of user interests or
page content. The stationary distribution of visitation frequency generated by Page-



Rank constitutes a prediction of actual click rates, which can then be compared with
empirical traffic data. We have shown that the assumptions underlying PageRank—
uniform link selection, uniform teleportation sources and targets—are violated by actual
user behavior, making it a poor predictor of actual traffic [22]. Our goal here is to present
a more predictive model, using PageRank as a null model for evaluation.

Other researchers have also introduced more realistic models to capture features of
real browsing behavior, such as the back button and tabbed browsing [19, 5, 8]. There
have also been attempts to model the interplay between user interests and page content;
Huberman et al. proposed a model in which visited pages have interest values described
by a random walk that continues as long as the current page has a value above a thresh-
old [16]. Such an approach relates to algorithms for improved topical crawlers [24].

We previously proposed a model in which users maintain a list of bookmarks from
which new sessions begin, providing memory of past navigation [3]. While it is able
to reproduce empirical page and link traffic distributions, it fails to account for patterns
exhibited by individual users, such as entropy and session characteristics. The ABC
model builds upon this previous model; some initial results were reported in [21]. Here
we extend this effort to encompass both individual and aggregate measures of Web
traffic, offering a comprehensive comparison among ABC, empirical measurements and
a baseline model. We also discuss the key role of the topology of the Web graph.

3 Empirical traffic data

We gathered our HTTP request data from an undergraduate dormitory at Indiana Uni-
versity under methodology described in detail in our previous work [20]. The requests
are gathered directly from a mirror of the building’s network connection and reflect
only unencrypted traffic. We use some basic heuristics to filter the data to include only
requests made from browsers for actual page fetches, retaining a series of (user, referrer
URL, target URL) triples. We also strip query parameters from the URLs, which affects
roughly one-third of the requests. While this helps in the common case that parame-
ters affect content within a static framework, it is less accurate when embedded CGI
parameters select a page. Our analysis indicates that this effect is greatly mitigated by
search-engine friendly design principles. The resulting data set contains 29.5 million
page requests that come from 967 distinct users. They visited 2.5 million unique URLs,
of which 2.1 million appeared as targets and 0.86 million appeared as referrers.

We organize each user’s clicks into tree-based logical sessions using an algorithm
described in our previous work [20]. The basic notions are that new sessions start with
empty-referrer requests; that each request represents a directed edge from a referring
URL to a target URL; and that requests belong to the session in which their referring
URL was most recently requested. These session trees mimic users’ multitasking behav-
ior of by permitting several active sessions at once. The properties of these session trees,
such as size and depth, are relatively insensitive to an additional timeout constraint [20].
We impose such a timeout as we form the sessions: a click cannot be associated with a
session tree that has been dormant for thirty minutes. This process yields 11.1 million
logical sessions in all, with a mean of over 11 thousand per user.



The structure of these trees allows us to infer how users backtrack as they browse.
Modern caching mechanisms mean that a browser generally does not issue a request for
a recently accessed page, preventing direct observation of multiple links pointing to the
same page, within a single session. While we have no direct way of detecting when the
user presses the back button, session trees allow us to infer “backwards” traffic: if the
next request in a tree comes from a URL other than the most recently visited, the user
must have navigated to that page or opened it in a separate tab.

Any statistical description involves a compromise between summarizing the data
and describing it accurately. For many human activities, including Web traffic, the data
do are not normally distributed, but rather fit into heavy-tailed distributions best approx-
imated by power laws [7, 22]. The mean and median often describe the data poorly, as
shown by a large and diverging variance and strong skew. The next best description is
a histogram; we thus present these distributions in terms of their probability density
functions rather than measures of central tendency. To characterize properties of traffic
data and evaluate models of navigation, we focus on six quantities, several of which are
discussed in preliminary work [20, 21]:

Page traffic The total number of visits to each page. Because of caching mechanisms,
the majority of revisits to a page by a single user beyond the first visit within each
session will not be represented in the data.

Link traffic The number of times each hyperlink has been traversed by a user, as iden-
tified by the referrer and destination URLs in each request. We typically observe
only the first visit to a destination page within a session.

Empty referrer traffic The number of times each page initiates a session. We assume
that a request without a referrer corresponds to using a bookmark, opening a link
from another application, or entering an address manually.

Entropy Shannon information entropy. For an individual user j, the entropy is defined
as Sj = −

∑
i ρij log2 ρij where ρij is the fraction of visits of user j to site i

aggregated across sessions.
Session size The number of unique pages visited in a logical session tree.
Session depth The maximum tree distance between the starting page of a session and

any page within that session. (Recall that sessions have a tree-like structure because
backtracking requests are usually served from the browser cache.)

4 ABC model

We now introduce the models for interpreting the empirical data. As a baseline, we con-
sider a PageRank-like reference model with teleportation probability pt = 0.15. This
value is standard in the literature and best approximates the empirical data. We simulate
a population of random walkers equal in number to our users. Each walker browses for
as many sessions as corresponding real-world user. These sessions are terminated by the
jumps, so the total number of pages visited by a walker differs from the corresponding
user. Teleportation jumps lead to session-starting pages selected uniformly at random.

We call our own model ABC for its main ingredients: agents, bookmarks and clicks,
as illustrated in Fig. 1. Agents possess some amount of energy, which represents their
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Fig. 1. Schematic illustration of the ABC model.

attention; it is spent by navigating and acquired by visiting interesting pages. Agents
also have a back button and a bookmark list that is updated during navigation. Each
agent starts at a random page with initial energy E0. Then, for each time step:

1. If E ≤ 0, the agent starts a new session.
2. Otherwise, if E > 0, the user continues the current session, following a link from

the present node. There are two alternatives:

(a) With probability pb, the back button is used, leading back to the previous page.
The agent’s energy is decreased by a fixed cost cb.

(b) Otherwise, with probability 1−pb, a forward link is clicked. The agent’s energy
is updated to E − cf +∆ where cf is a fixed cost and ∆ is a stochastic value
representing the new page’s relevance to the user. The visitation is recorded in
the bookmark list, which is kept ranked from most to least visited.

To initiate a new session, the bookmark with rank R is chosen with probability
P (R) ∝ R−β . This selection mechanism mimics the use of frequency ranking in var-
ious features of modern browsers, such as URL completion. The functional form is
motivated by data on selection among a ranked list of search results [14].

The back button is our basic mechanism for producing branching behavior. The
data indicate that the incoming and outgoing traffic of a site are seldom equal, with a
ratio distributed over many orders of magnitude [22]. This violation of flow conserva-
tion cannot be explained by teleportation alone; the sessions of real users have many
branches. Our prior results show an average node-to-depth ratio among session trees of
almost two. These observations are consistent with the use of tabs and the back button,
behavior confirmed by other studies [10, 30].

The role of energy is critical. The duration of a real-world session depends on a
user’s individual goals and interests: visiting relevant pages leads to more clicks and
longer sessions. ABC therefore incorporates agents with distinct interests and page top-
icality, relying on the intuition that an agent spends energy when navigating and gains



Fig. 2. Representation of a few typical and representative session trees from the empirical data
(top) and from the ABC model (bottom). Animations are available at cnets.indiana.edu/
groups/nan/webtraffic.

it by discovering pages that match its interests. Moving forward costs more than us-
ing the back button. Known pages yield no energy, while novel pages increase energy
by a random amount representing their relevance. Agents browse until they run out of
energy, then start another session.

The dynamic variable ∆ reflects a page’s relevance to an agent. If ∆ values are in-
dependent, identically distributed random variables, the amount of stored energy will
behave as a random walk. The session duration ` (number of clicks until E = 0) will
have a power-law tail P (`) ∼ `− 3

2 [16]. However, empirical results suggest a larger ex-
ponent [20]. Moreover, studies show that content similarity between pages is correlated
with their link distance, as is a page’s relevance to a given topic [11, 23]. Neighboring
pages are topically similar, and the relevance of page t to a user is close to that of page
r linking to t. To capture such topical locality, we correlate the ∆ values of adjacent
pages. We initially use ∆0 = 1; then, when a page t is first visited in a given session,
∆t is given by ∆t = ∆r(1 + ε), where r is the referrer page, ε is uniformly randomly
distributed in [−η, η], and η controls the degree of topical locality. A visited page can
again become interesting in a later session and provide the agent with energy. However,
it will yield different energy in different sessions, modeling drift in user interests.

5 Model evaluation

Our simulations take place on a scale-free network withN nodes and degree distribution
P (k) ∼ k−γ , generated according to the Molloy-Reed algorithm [25], which we call
G1. This graph has N = 107 nodes, more than observed in the data, to ensure adequate
room for navigation. We also set γ = 2.1 to match our data set. To prevent dangling
links, we construct G1 with symmetric edges. We also ran simulations of ABC on a sec-
ond graph (G2) derived from an independent, empirical data set obtained by extracting
the largest strongly connected component from the Web traffic of the entire university
population (about 100,000 people) [22]. G2 is thus an actual subset of the Web graph
with no dangling links. Based on three weeks of traffic as measured in November 2009,
G2 has N = 8.14× 106 nodes and the same degree distribution, with γ ≈ 2.1. Within
each session we simulate caching by recording traffic only when the target page is novel
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Fig. 3. Distribution of (a) page traffic and (b) link traffic generated by ABC model versus data
and baseline.

to the session. This lets us count the unique pages visited, which mirrors the empirical
session size. These cached pages are reset between sessions.

We must now set the parameters of ABC. The distribution of empty-referrer traffic
will depend on the parameter β and is well-approximated by P (T0) ∼ T−α0 , where
α = 1 + 1/β [29]. Empirically, this exponent is α ≈ 1.75 [22]; to match it, we set the
parameter β = 1/(α− 1) = 1.33. We can also fit the back button probability pb = 0.5
from the data. The initial energy E0, the forward and backward costs cf and cb, and the
topical locality parameter η control session duration. We thus set E0 = 0.5 arbitrarily
and estimate the costs as follows. Empirically, the average session size is roughly two
pages. The net energy loss per click is −δE = pbcb + (1 − pb)(cf − 〈∆〉), where
〈∆〉 = 1 is the expected energy value of a new page. By setting cf = 1 and cb = 0.5,
we obtain an expected session size 1− (1− pb)E0/δE = 2 (counting the initial page).
In general, higher costs lead to shorter sessions and lower entropy. We explored the
effects of η by simulation, settling on η = 0.15. Small values mean that all pages
have similar relevance, making the session distributions too narrow. Large values erase
topical locality, making the distributions too broad. Our results refer to this combination
of parameters, with the numbers of users and sessions per user being drawn from the
empirical data. We use the same parameters for both G1 and G2, without any further
tuning to mach the properties of these networks.

The ABC agents generate session trees similar to those in the empirical data, as
shown in Fig. 2. For a quantitative evaluation, we compare ABC with the empirical
distributions described in § 3 and the reference PageRank model as simulated on the
artificial G1 network.

We first consider the aggregate distributions, starting with traffic received by indi-
vidual pages, as shown in Fig. 3(a). The empirical data show a broad power-law distri-
bution for page traffic, P (T ) ∼ T−α, with exponent α ≈ 1.75, consistent with prior
results for host-level traffic [22, 20]. Theoretical arguments [26] suggest that PageRank
should behave similarly. In general, a node will be visited if a neighbor has just been
visited, making its traffic proportional to its degree in the absence of assortativity. This
idea and prior results [22] lead us to expect PageRank’s distribution of page traffic to fit
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(b) user entropy generated by ABC model versus data and baseline.

a power law P (T ) ∼ T−α where α ≈ 2.1 matches the exponent of the in-degree [7, 13],
as shown in Fig. 3(a). In contrast, traffic from ABC is biased toward previously visited
pages (bookmarks), yielding a broader distribution and matching empirical measure-
ments.

In Fig. 3(a), we compare the distributions of traffic per link ω from the models with
the empirical data, revealing a power law for P (ω) with degree 1.9, agreeing with prior
measurements of host-level traffic [22]. The comparison with PageRank illustrates the
diversity of links with respect to their probability of being clicked. A rough argument
can explain the reference model’s poor performance at reproducing the data. Recall
that, disregarding teleportation, page traffic is roughly proportional to in-degree. The
traffic expected on a link would thus be proportional to the traffic of the source page
and inversely proportional to its out-degree, assuming that links are chosen uniformly
at random. In-degree and out-degree are equal in our simulated graphs, leading to link
traffic that is independent of degree and nearly constant for all links, as shown by the
decaying distribution for PageRank. For ABC, the stronger heterogeneity in the prob-
ability of visiting pages is reflected in a heterogeneous choice of links, resulting in a
broad distribution better fitting the empirical data, as shown in Fig. 3(b).

Our empirical data in Fig. 4(a) show that pages are not equally likely to start a
browsing session. Their popularity as starting points is roughly distributed as a power
law with exponent of about -1.8 (consistent with results for host-level traffic [22]), im-
plying diverging variance and mean as the number of sessions increases. While not
unexpected, this demonstrates a serious flaw in the hypothesis of uniform teleporta-
tion. Because PageRank assumes uniform probability among starting pages, its failure
to reproduce the empirical data is evident in Fig. 4(a). In contrast, ABC’s bookmarking
mechanism captures the non-uniform probability of starting pages, yielding a distri-
bution similar to the empirical data, as shown in Fig. 4(a), supporting the idea that
rank-based bookmark selection is a sound cognitive mechanism for initiating sessions.

When it comes to individual users, the simplest hypothesis is that the broad distri-
butions for aggregate behavior reflect extreme variability within the traffic of each user,
suggesting that there is no “typical” user as described by their overall traffic. To exam-
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Fig. 5. Distribution of (a) session size (unique pages per session) and (b) session depth generated
by ABC model versus data and baseline.

ine users’ diversity of behavior, we adopt Shannon’s information entropy as defined in
§ 3. Entropy measures the focus of a user’s interests, offering a better description of a
single user than, e.g., the number of distinct pages visited; two users who have visited
the same number of pages can have very different measures of entropy.

Given a number of visits Nv , the entropy is maximum (S = Nv log(Nv)) when Nv
pages are visited once, and minimum (S = 0) when all visits are to a single page. The
distribution of entropy across users is shown in Fig. 4(b). We observe that the Page-
Rank model produces higher entropy than observed in the data: a PageRank walker
picks starting pages with uniform probability, while a real user most often starts from
a previously visited page, leading them to revisit neighboring pages. The ABC model
yields entropy distributions that are influenced by the underlying network but fit em-
pirical entropy data better than PageRank, suggesting that bookmarks, the back button,
and topicality help to explain the focused habits of real users.

Finally, we consider two distributions that describe logical sessions: size (number of
unique pages) and depth (distance from the starting page), both of which affect entropy.
Figs. 5(a) and (b) show that the empirical distributions are broad, spanning three or-
ders of magnitude, with a large proportion of long sessions. The brief sessions seen for
the PageRank model originate from its teleportation mechanism, which cannot capture
broadly distributed session sizes. The jump probability pt bounds the length ` (number
of clicks) of a session, with a narrow, exponential distribution P (`) ∼ (1− pt)`. These
exponentially short sessions do not conflict with the high entropy of PageRank walk-
ers (Fig. 4(b)), which arises from jumps to random targets rather than browsing itself.
In contrast, user interest and topical locality in ABC yield broad distributions of both
session size and depth, as seen in Fig. 5(a) and (b). Agents visiting relevant pages tend
to keep browsing, and relevant pages lead to more relevant pages, creating longer and
deeper sessions. We believe the diversity shown in aggregate measures of traffic is a
consequence of this diversity of interests rather than the behavior of extremely eclectic
users—as shown by the narrow distribution of entropy.
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To study the dependence of ABC on network topology, we ran the model on addi-
tional artificial networks. We eliminated any limitation of network size by simulating
an infinite graph that generates new nodes as agents navigate. In this limit case, an
agent’s energy level is a random walk, with session size obeying a power law with ex-
ponent −3/2 [16]. However, the constant availability of new content leads to too many
large sessions, as shown in Fig. 6. We then considered a Barabasi-Albert (BA) tree with
the same node count as G1. The large number of leaf nodes affects the distribution of
session size dramatically. Agents that begin a session in a leaf seldom to backtrack suf-
ficiently high up the tree to discover new nodes; they quickly run out of energy, yielding
a narrow distribution (Fig. 6). If we lift the constraint that the network contain no cycles,
agents can escape these cul-de-sacs. Using an Erdös-Renyi (ER) network broadens the
distribution of session size (Fig. 6), bringing it closer to the empirical data while still
underestimating the number of large sessions due to the lack of hubs.

For comparison, Fig. 6 also shows the distribution obtained with G1, a network with
cycles and broadly distributed degree. As already seen (Fig. 5(a)), this network gives
excellent results, showing that both hubs and cycles are needed for the exploration of
distant regions of the network. If either element is missing, agents can reach only limited
content, leading to shortened sessions.

6 Conclusions

Previous studies have shown that Markovian processes such as PageRank cannot ex-
plain many patterns observed in real measurements of Web activity, especially the di-
versity of starting points, the global diversity of link traffic, and the heterogeneity of ses-
sion sizes. Furthermore, individual behaviors are quite focused in spite of such diverse
aggregate measurements. These observations call for a stateful, agent-based model that
can help explain the empirical data through more realistic browsing behavior. We have
proposed three key ingredients for such a model. First, agents maintain individual lists
of bookmarks (a memory mechanism) for use as teleportation targets. Second, agents
have a back button (a branching mechanism) that can also simulate tabbed browsing.
Finally, agents have topical interests that matched by page content, modulating the prob-
ability of an agent starting a new session and leading to heterogeneous session sizes.



We have shown that the resulting ABC model is capable of reproducing with re-
markable accuracy the aggregate traffic patterns we observe in our empirical measure-
ments. More importantly, our model offers the first account of a mechanism that can
generate key properties of logical sessions. This allows us to argue that the diversity ap-
parent in page, link, and bookmark traffic is a consequence of the diversity of individual
interests rather than the behavior of very eclectic users. Our model is able to capture,
for the first time, the extreme heterogeneity of aggregate traffic measurements while
explaining the narrowly focused browsing patterns of individual users. While ABC is
more complex than prior models, its greater predictive power suggests that bookmarks,
tabbed browsing, and topicality are salient features of how we browse the Web. We
believe that ABC may lead the way to more sophisticated, realistic, and hence more
effective ranking and crawling algorithms.

The model does rely on several key parameters. While we have attempted to make
reasonable and realistic choices for most of these parameters and explored the sen-
sitivity of our model with respect to the rest, further work is needed to understand the
combined effect of these parameters in a principled way. For example, we already know
that parameters such as network size, costs, and topical locality play a key role in modu-
lating the balance between individual diversity (entropy) and session size. In the future,
we hope to analyze the model from a more theoretical perspective.

Finally, while the ABC model is a clear step in the right direction, it shares some
limitations of existing efforts, most notably the uniform choice among outgoing links
from a page, which may cause the imperfect match between the individual entropy
values of our agents and those of actual users.
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