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ABSTRACT
A collaborative peer network application called 6Search
(6S) is proposed to address the scalability limitations of
centralized search engines. 6S peers depend on a lo-
cal adaptive routing algorithm to dynamically change the
topology of the peer network and search for the best neigh-
bors to answer their queries. We validate prototypes of
the 6S network via simulations with70− 500 model users
based on actual Web crawls and find that the network topol-
ogy rapidly converges from a random network to a small
world network, with clusters emerging from user commu-
nities with shared interests. We finally compare the quality
of the results with those obtained by centralized search en-
gines such as Google, suggesting that 6S can draw advan-
tages from the context and coverage of the peer collective.
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1 Introduction and Background

Centralized search engines have difficulty with coverage of
the Web [6] because the Web is large, fast-growing and fast-
changing [3, 4, 8]. Further, various biases introduced to
address the needs of the “average” user imply diminished
effectiveness in satisfying many atypical search needs. We
identify the above limitations as problems ofscale.

It is evident that distributed systems are part of the
answer to the scale problem and peer network is increas-
ingly seen as a candidate framework for distributed Web
search applications. One model proposed by the YouSe-
arch project is to maintain a centralized search registry for
query routing (similar to Napster) , and moreover enrich the
peers with the capability to crawl and index local portions
of the Web [2]. The central control in this approach unfor-
tunately makes it difficult to adapt the search process to the
heterogeneous and dynamic contexts of the peer users.

The opposite, completely decentralized approach (as
in early versions of Gnutella) is another option. But this
approach has the well-known disadvantage that peers are
flooded with traffic from queries and responses. To reg-
ulate the traffic, adaptive content based routing has been
proposed for the file sharing setting [5] where the routing
mechanism relies on metadata describing nodes’ contents.

Combined approaches between the above two are also
available such as distributed routing tables [10, 11] and hi-
erarchical routing between hub and leaf peers [7].

In this paper we propose a different model for peer-
based Web search, which uses the idea of modeling neigh-
bor nodes by their content but without assuming the pres-
ence of special directory hubs. Each peer is both a (lim-
ited) directory hub and a content provider; it has its own
topical crawler and local search engine. Queries are first
matched against the local engine, and then routed to neigh-
bor peers to obtain more results. Initially the network has a
random topology but our protocol includes a learning algo-
rithm by which each peer uses the results of its interactions
with neighbors (matches between queries and responses) to
refine its model of the other peers.

The peer network should lead to the emergence of a
clustered topology by intelligent collaboration between the
peers. In fact, we predict that the ideal topology for such
a network would be a “small world” [14]. Following Mil-
gram’s famous experiments on “six degrees of separation”
[14], we named our model6Search(6S).

After a brief introduction of the 6S protocol, ar-
chitecture, and adaptive query routing algorithm, the pa-
per presents the results of extensive experiments based on
model users and simulated queries using real, distributed
Web crawl data.

2 6S Protocol and Algorithms

The 6S protocol layer sits between the application and the
network (TCP/IP) stack. The design of our protocol is
based on the following considerations: (1) peers are inde-
pendent; (2) a peer can enter and leave the network at any
time; (3) a peer should not be overwhelmed by other peers;
(4) a query should not be propagated indefinitely; (5) a peer
may choose not to respond or forward some queries; and
(6) the architecture should make it difficult to create denial
of service (DoS) attacks using the service.

2.1 Message Primitives

There are four major message primitives on which 6S pro-
totype protocol is based. (1) Thequery messagecon-
sists of query keywords, weight of each keyword,ID ,



timestamp , and theTTL (time to live). The purpose
of the TTL is to limit propagation of a query in the net-
work by decreasing the value of the TTL’s counter each
time the query is forwarded until the counter value is 0.
(2) Thequery responseis used by a peer to respond to other
peers’ search queries. The response must be sent back to
the neighbor from which we received the query regardless
of which peer originated the query. This is to prevent DoS
attacks created by exploiting the response system. (3) The
profile requestallows a peer to request profiles from oth-
ers. The profile describes what a peer has indexed and is
ready to share.We use the topN most frequent keywords
in a peer’s index as the initial profile. (4) Theprofile re-
sponseallows a peer to respond to a request for its own
profile. Section 2.3 describes how a profile is generated
and updated by a peer.

2.2 Neighbor Management in 6S Networks

To form communities without centralized control or ag-
gressive flooding of the network, the 6S peer needs to find
new peers through its current neighbors. The approach that
we use in our prototype is to let a peer attach its contact in-
formation, a unique ID (ownerid ), with the query. If the
peer that receives a query wants to become a neighbor of
the requesting peer, it will add its own contactID into the
query response message. The new neighbor peers can later
contact each other directly.

The 6S protocol gives each peer a fixed number of
slots for neighbors,Nn, depending on their bandwidth and
computational power to process neighbor data. A peer will
search for new peers when its neighbor slots are not full
or when it wants to find better neighbors than the currently
known peers. Each peer may of course know about more
than Nn peers but the maximum numberNk of known
peers will be capped by the peer application’s available
memory or storage.

Many query routing algorithms in the P2P literature
(cf. Section 1) require peers to send update messages in or-
der to maintain valid network information when peers leave
the network. In contrast, a 6S peer does not need to send
any messages when it wants to leave the network because
our routing algorithm (described in the following section)
dynamically updates the neighbor profiles based on queries
and responses in the system.

2.3 Adaptive Query Routing

Each peer will learn and store profiles of other peers to sup-
port adaptive query routing. A neighbor profile is the in-
formation a particular peer maintains to describe its knowl-
edge about what that neighbor stores in its search engine in-
dex. By using profile information, peers try to increase the
probability of choosing the appropriate neighbors to route
their queries.

In our first 6S prototype, we implemented a very sim-
ple method to initialize and maintain peer profiles consist-
ing of two steps. First, a peer asks a neighbor for its de-
scription, defined as a list ofn most frequent keywords in
the neighbor’s index. Second, the peer performs a crude up-
date to this list by adding query terms for which the neigh-
bor returns good responses. The score of a keyword in such
a neighbor profile is the highest similarity score of the re-
sponses a neighbor returns for that keyword. This method
was shown to give rise to an efficient network topology and
promising initial results [1]. In this paper, we improve the
reliability and robustness of the simple learning algorithms
discussed above by introducing a better profile representa-
tion and a novel soft updating scheme.

Interactions with peers reveal information of varying
reliability. For example, a direct response to a query is
telling about a peer’s knowledge with respect to that query,
but may also reveal (less reliable) information about the
peer’s knowledge relative to other queries. We want to cap-
ture all available information in profiles, but must discrim-
inate information on the bases of its reliability. We let each
peer maintain two profile matrices,W f andW e for focused
andexpandedinformation, respectively. Each profile ma-
trix has the same structure and is initially empty; rows cor-
respond to terms and columns to peers. Thus an element
wi,p of W is the contribution of termi to the profile of
known peerp (p = 1, . . . , Nk).

Focused profile: weightswf
i,p are initially updated based

on p’s response to a neighbor profile request (cf. Sec-
tion 2.1), and successively updated through query-
response interaction—namely for termsi in queries
submitted or forwarded top. Based on the compari-
son of the incoming hits with its local hits for a query
Q, the peer makes an assessment aboutp’s knowledge
with respect to termsi ∈ Q.

Expanded profile: weights we
j,p are updated through

query-response interaction analogously to the focused
profile, but for termsj /∈ Q that co-occur with
terms i ∈ Q in a hit paged returned byp, such
that j has a higher term frequency:TF (j, d) >
maxi∈Q TF (i, d). If a certain set of documents is
a good response for a certain query, then it may as
well be a good response for queries that are well rep-
resented in the set. By this query expansion, we ex-
pect to speed up neighbor learning since queries are
typically short and thusW f is typically rather sparse.

The 6S peer updates its neighbor profile when it gets
a query response. Here we propose the following learning
rule, which we will refer to assoft updating, to modify the
weights of the query terms in the neighbor profile matrices:

wi,p(t + 1) = (1− γ) · wi,p(t) + γ · Sp + 1
Sl + 1

(1)

wheret is a time step,Sp andSl are the average scores of
p’s hits and the local hits respectively in response to the



query Q, andγ is a learning rate parameter (0 < γ <
1). The termsi subject to this learning rule depend onQ
and the profile matrix (focused or expanded) as described
above.

The actual set ofNn neighbors, i.e. those to whom
queries are sent, is selected dynamically for each query at
time t among theNk(t) known peers. The adaptive routing
algorithm to manage neighbor information and to use such
information for dynamically selecting neighbors to a query
is described by the following steps:

1. Request a profile from a new peer when it is first dis-
covered. Next, initialize a description for the peer us-
ing the list of keywords contained in the peer’s profile.

2. Evaluate responses from neighbors (and neighbors’
neighbors, and so on) to queryQ to update the de-
scription of each known peer: (a) ComputeSp and
Sl. (b) UpdateW f using Equation 1 for terms inQ.
(c) If Sp > Sl updateW e using Equation 1 for terms
not in Q that occur in the hits received from neigh-
bors more frequently than the query terms. (d) Send
the discovery signal (ownerid ) with the next query
to that neighbor. (e) Add new peers that respond to
discovery signals to the list of known peers with their
corresponding profiles.

3. To route the next queryQ′, rank known peers by sim-
ilarity σ computed as follows:

σ(p, Q′) =
∑
i∈Q′

[
α · wf

i,p + (1− α) · we
i,p

]
(2)

whereα is a reliability parameter, typically0.5 <
α < 1 to reflect higher confidence in focused profile
weights as they come from direct responses to queries.
Select the topNn ranked known peers as neighbors,
and send/forwardQ′.

4. Goto step 2.

3 Experimental Setup

We created two different types of simulators that allow us
to model artificial users and run their queries over real in-
dexes obtained from actual distributed Web crawls. Our
simulators take a snapshot of the network for every time
step. In a single time step of the simulator, all of the peers
process all of their buffered incoming messages and send
all of their buffered outgoing messages.

The first simulation models a relatively small network
with relatively large peers while the second models a larger
network with relatively light-weight peers. Specifically,
there areN = 70 and N = 500 peers belonging to 7
and 50 different groups of 10 peers each, in our first and
second simulation, respectively. Each group is associated
with a general topic. Each peer has its own topical crawler
and peer search engine, but for the peers in a given group
the search engines are built by topical crawlers focusing on

the same topic. For example, if a group’s topic is “sports,”
then all the peer search engines in this group focus on dif-
ferent aspects of sports. Two points are to be emphasized
here. First, 6S peers can have multiple and broad topics
even though our experiment limits peers to have only rela-
tively narrow topics. Second, while we simulate these com-
munities to see if the peer network can discover them, any
individual peer has no more knowledge about other. peers
in its group than about all other peers.

Group topics are chosen from the Open Directory1

(ODP) to simulate the group structure, according to a sim-
ple methodology developed to evaluate topical crawlers [9].
For example,Computers/Software/Freeware is one
group topic in our first simulation. For each group, we ex-
tract a set of 100–200 URLs from the ODP subtree rooted at
the category node corresponding to the group’s topic. Ran-
dom subsets are assigned to the peer crawlers as seeds. So
the search engines within each group differ from each other
according to the different sets of crawled pages. The peer
uses its group topic and its own seed URLs to crawl 10,000
pages in our first simulation and 1,000 pages in our second
simulation. Each peer is allowed to know about all of the
other peers (Nk = 69 for first simulation andNk = 499
for second simulation) and to haveNn = 5 neighbors. At
the beginning of each experiment, the peer network is ini-
tialized as a randomErdos-Renyigraph, i.e., each peer is
assignedNn = 5 random neighbors drawn from a uniform
distribution, irrespective of groups.

Each peer in our experiments has 10 local 3–5 words
queries. For the first simulation, the queries for each peer
were generated by randomly picking keywords from the
ODP descriptions of the Web sites whose URLs were used
as seeds for the peer’s crawler. For the second simulation,
instead of ODP descriptions we use the title strings of the
Web sites. The peer that has a local query from a certain
Web site and the peer that used the URL of this Web site as
a seed for the peer’s crawler belong to the same group.

Finally we empirically set the profile learning rate to
γ = 0.3 (Equation 1), the profile reliability parameter to
α = 0.8 (Equation 2), and theTTL to 3. We ran the sim-
ulator for about 10,000 time steps for the first simulation
(corresponding to 1,000 queries issued per peer) and 1,200
time steps for the second simulation (corresponding to 120
queries issued per peer).

Our first experiment was performed on IU’s AVIDD
Linux cluster with 208 2.4 GHz Prestonia processors. A
complete simulation run took approximately 6 hours. Our
second experiment was distributed over 5 dual 2.8 GHz
Linux machines, each running 100 peers. A complete sim-
ulation run took approximately 24 hours.

4 Analysis for Few Large Peers

With the purpose of showing the variation of the network
topology at different simulation time steps, we need to in-

1http://dmoz.org
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Figure 1. Small world statistics of the 6S peer network.

troduce two network statistics, thecluster coefficientand
thediameter. Thecluster coefficientfor a node is the frac-
tion of a node’s neighbors that are also neighbors of each
other. This is computed in the directed graph based on
each peer’sNn neighbors. Thus, in our simulation, with
Nn = 5, the total number of possible directed links be-
tween neighbors isNn(Nn − 1) = 20. The overall clus-
ter coefficientC is computed by averaging across all peer
nodes. Thediameteris defined as the average shortest path
length` across all pairsp of nodes. We compute the av-
erage shortest path asD = ( N

N−1

∑
ij `−1

ij )−1, a measure
that is robust with respect to the fact that the network is not
necessarily strongly connected, and therefore some pairs
do not have a directed path (` = ∞). Figure 1 shows that
the 6S diameter remains roughly equal to the initial random
graph diameter, while the cluster coefficient increases very
rapidly and significantly, stabilizing around a value twice as
large as that of the initial random graph after only 5 queries
per peer. These conditions define the emergence of a small
world topology in our peer network [14].

To illustrate the small world phenomenon, Figure 2
shows the transformations of the peer network topology for
the whole network and the neighborhood of a single group.
One can observe that there are more local (within group)
links and fewer long (cross-group) links on the right-hand-
side, revealing the emergence of local clusters in the net-
work topology as the semantic locality is discovered among
peers.

We want to evaluate the quality of results obtained
through 6S, and compare them to the results obtained from
a centralized search engine using the same amount of net-
work resources as a 6S run. For this purpose, we plot pre-
cision versus recall, a standard technique in information
retrieval. For comparison, we build a centralized search
engine by crawling and indexing 700,000 pages from the
same seeds but using a traditional (breadth-first) crawler
rather than a topical crawler. We issue the same queries
used for 6S and collect 100 top hits for each query. To cap-
ture the users’ relevance contexts, we extend each of the
700 peer queries with a single most frequent term from the
profile of the peer owning the query. Each extended query
is submitted to a separate, centralized search engine that
combines the 70 peers’ search engine databases; the top
100 hits returned are used as the relevant set of each query.

Pajek Pajek

Pajek Pajek

Figure 2. Peer network connectivity for all groups (top) and
for one of the groups (bottom). Left: initial neighbor links.
Right: final neighbor links.
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Figure 3. Precision-recall plots for 6S and the centralized
search engine. Error bars correspond to standard errors of
precision and recall averaged across queries.
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Figure 4. Relative improvement in F-measure due to query
routing based on simple learning and to increasing the num-
ber of hits per query responseNh from 5 to 10, plotted ver-
sus the total number of top hits considered. The gray bars
measurements are taken at the beginning of the simulation.

Figure 3 shows the precision-recall plots comparing
quality of results by 6S and the centralized search en-
gine. 6S significantly outperforms the centralized search
engine. This occurs because queries are successfully routed
to those peers who can return highly relevant hits due to
their stronger focus relative to user interests.

Figure 4 shows that performance improves as peers
learn to route queries to the appropriate neighbors, and
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to peers in the same group as themselves, and diameter of
peer network versus time.

as the number of hitsNh that peers return in response
to queries increases. Performance is measured by the F-
measure, which combines precision and recall through their
harmonic mean. The relatively small improvement due to
the simple learning algorithm motivated our design of more
sophisticated adaptive query routing schemes.

5 Analysis for Many Small Peers

For our second simulation, we set the number of hits per
query responseNh = 10. In order to evaluate the query
routing algorithm described in Section 2.3, here we use two
baseline query routing algorithms that do not employ the
expanded profileW e: (1) simpleupdatesW f by replacing
wf

i,p with the best hit score fromp; (2) soft updateusesW f

with the update rule in Equation 1.
Figure 5 shows that the average fraction of neighbors

that are in the same interest group as a peer increases signif-
icantly and rapidly with time. This indicates that with the
proposed adaptive query routing algorithm, even though
the ratio of related peers is smaller compared to the first
simulation (1/50 rather than1/7), a peer can still quickly
find other peers with similar interest focus.

The relevant sets in the second simulation are sim-
ply the sets of URLs classified by the ODP under the same
topic as the page whose title is used as query. We show
precision-recall snapshots in Figure 6. Already at the start,
we observe a difference in performance between the learn-
ing algorithms. However, during the 4 time steps, the first
query took to propagate (it can only travel as far as half
the round trip) adaptive peers in the query path had al-
ready learned about their neighbors, hence they could bet-
ter forward the query. Besides showing that all query rout-
ing schemes take advantage of the learning and improve
their performance over time, Figure 6 also confirms that
the more sophisticated learning algorithm outperforms the
simpler ones, with the best performance achieved by com-
bining expanded profiles and the soft profile update rule.

After all, we compare the quality of the average re-
sults obtained by our model with those returned by a real-
world search engine. To this end, we queried the Google
Web API. As a summary performance measure, we em-
ployed the commonly used averageprecision at 10, 〈P10〉.
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Figure 6. Precision-recall plots for three learning schemes,
taken at the start of the simulation (top), and after 1000
time steps or 125 queries per peer (bottom).

Table 1. Average precision at 10 of Google and 6S.

〈P10〉 σ〈P10〉 95% Conf. Interval
Google 0.079678 0.00095 (0.0778, 0.0816)

6S 0.078380 0.00062 (0.07714,0.07962)

As shown in Table 1, the difference in performance
between the two systems is not statistically significant, sug-
gesting that our model can be competitive with much larger
search engines — Google knows about104 more pages
than the entire 6S collective. The pages used as relevant
sets in this experiment (ODP pages) are well known to
Google, and using their titles as queries allowed Google to
retrieve and rank very highly the pages with those titles.
However, our model users can exploit their context and
share their knowledge via collaboration during the search
process, while Google has a single, universal ranking func-
tion and cannot exploit such context. Thus, Google did not
rank as highly pages that our model users considered rel-
evant because highly related to the page used to compose
the query. Another factor to be considered is that Google
may have returned other relevant pages which were not in
our relevant sets; our automatic assessment methodology
would not allow us to give credit for those. Despite this
caveat, we find the comparative results very encouraging.

6 Conclusion

In this paper, we introduced a collaborative peer network
application called 6Search, with which we intend to study
the idea that the scalability limitations of centralized search
engines can be overcome via distributed Web crawling and
searching methodology. The results presented here seem to



support the idea that adaptive routing can work with real
data and that critical network structure can emerge sponta-
neously from the local interactions between peers, captur-
ing the locality of content interests among them. Our exper-
iments also suggest that 6Search can outperform central-
ized search engines, which cannot take advantage of user
context in their crawling and searching processes.

One can observe a sharp drop in precision as recall in-
creases (Figures 3 and 6), which corresponds to the drop in
F-measure as each peer considers more hits (Figure 4). The
reason is that each neighbor contributes a small numberNh

of hits, so in order to increase recall a peer must consider
a larger pool of neighbors, some of which may belong to
different topical communities.

As a project in its infancy stage, 6S has many direc-
tions for further development. One technique that we in-
tend to test for Web searching is query relaxation which
was proposed in a semantic Web setting where peers query
for RDF data [12]. A robust algorithm is to be developed
for combining hits from peers in the Combinator Module,
thus allowing for heterogeneous scoring by peer search en-
gines. We also plan to study the use of reinforcement
learning algorithms for identifying good neighbors not only
from their individual performance but also that of their
neighborhoods. Finally the network security issue needs
to be elaborated in our future implementation.

In parallel with the above algorithmic extensions, im-
plementation of a working 6S peer application is under
way. We are developing a prototype based on the JXTA
framework [13], which will integrate the 6S protocol, topi-
cal crawler, document index system, search engine system,
bootstrap system, and network communication system; we
plan to release the prototype to the open-source commu-
nity. Testing the prototype in a realistic setting will allow us
to tune our protocols and algorithms. For example, while
a peer may decide not to share its knowledge with other
peers, we will consider whether the information available
to a peer should be dependent on the information it is will-
ing to share. Testing under realistic conditions will also
allow us to study the robustness and scalability of the net-
work under large scale usage.
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