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The trend of the recent years in distributed information environments is a
good example of the life-like complexity that we expect to observe in most
aspects of information and computational science. The explosion of the Web
and electronic mail, multiplying the number of information providers and
consumers many times over and bringing the Internet inside the average
home, has created formidable new opportunities and challenges in almost
every area of computer and information science.

In an e�ort to address such problems, researchers in arti�cial intelligence
and information retrieval have already been successful in developing agent-
based techniques to automate many tedious tasks and facilitate the manage-
ment of the growing amounts of information 
ooding users. But the work has
just begun. There is still much need for tools to assist users in ways that scale
with the growth of the Web, and adapt to both the personal preferences of
the user and the changes in user and environmental conditions.

This chapter discusses an agent-based approach to building scalable in-
formation searching algorithms. For systems designed to let users locate rel-
evant information in highly distributed and decentralized databases, such as
the Web, we argue that scalability is one of the main limitations of the cur-
rent state of the art. Given such an ambitious goal, it probably comes as
no surprise that the solution proposed here draws on many ideas and issues
discussed in other parts of this book: cooperation in multi-agent systems,
information chain economy in rational agents, and spawning and security in
mobile agents.

1.1 Introduction

The complexities emerging in networked information environments (decen-
tralization, noise, heterogeneity, and dynamics) are not unlike those faced



2 Filippo Menczer and Alvaro E. Monge

by ecologies of organisms adapting in natural environments. The capabilities
of such natural agents | local adaptation, internalization of environmental
signals, distributed control, integration of externally driven and endogenous
behaviors, etc. | represent desirable goals for the next generation of arti�cial
agents: autonomous, intelligent, distributed, and adaptive. These considera-
tions, along the lines of the arti�cial life approach, inspired us to base our
model upon the metaphor of an ecology of agents.

In this sense, the multi-agent system is not composed of a few agents with
distinct and clearly de�ned functions, but rather by a (possibly very) large
number of agents collectively trying to satisfy the user request. The number
of agents is determined by the environment, in turn shaped by the search
task. This does not mean that all agents responding to a speci�c search are
identical; each will adapt to both the local context set by the environment
and the global context set by the user.

Cooperation results from the indirect interaction among agents, mediated
by the environment. If there are su�cient resources to sustain multiple agents
in a given environmental neighborhood, then new agents will spawn and
collaborate with the existing ones. If resources are scarce, on the contrary,
the agents will compete and some of them will be eliminated.

The ecological metaphor thus induces a rational use of the information
resource chain. Computational resources (CPU time) and network resources
(bandwidth) are allocated in proportion to the recently perceived success
of an agent, estimated from the relevance of the consumed information re-
sources. Ideally, each agent would browse the Web neighborhood in which it
is situated like its human master would, given her �nite resources | time
and attention.

The approach discussed in this chapter assumes that, in exchange for im-
proved bandwidth or payments, servers may allow trusted mobile agents to
execute and possibly even spawn new agents using their hardware (CPU,
memory, disk storage) in a controlled operating environment. If such an as-
sumption holds, agents can take advantage of the distributed nature of our
algorithm. They can execute in a parallel, asynchronous fashion, resulting in
a great potential speedup. Security and distributed systems issues are central
to the implementation of such mobile agents. If the assumption fails, however,
the agents can still execute in a client-based fashion. The algorithm becomes
essentially sequential (although possibly multi-threaded), and thus simpler
to implement. The decrease in performance can be partially o�set by the use
of a central cache. While the distributed execution of our mobile agents has
been simulated successfully, the case study illustrated in this chapter assumes
a client-based implementation.

The next section provides background on the current state of the art in in-
formation gathering from networked and distributed information sources. To
be sure, the �eld is evolving very rapidly and agent research is playing a key
role in generating the technological advances that may soon allow us to tame
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the complexity of the Web. Therefore we have no aspiration at completeness,
but merely intend to set a stage in which to identify, in the following section,
the limitations of the current methodologies. We then give an overview of
the InfoSpiders system, an implementation that embodies the approach sug-
gested here to complement the scale limitations of search engines. InfoSpiders
have been introduced and described elsewhere [27, 29, 30, 28], so our purpose
is to summarize those aspects of the model that are relevant to the issue of
scalability. Section 1.5 illustrates through a case study how these adaptive
online search agents can complement search engines to achieve scalability.
The chapter concludes with an outline of InfoSpiders' previous results and a
discussion of the possible applications of the InfoSpiders approach.

1.2 Engines and agents

Exploiting the proven techniques of information retrieval, search engines have
followed the growth of the Web and provided users with much needed assis-
tance in their attempts to locate and retrieve information from the Web.
Search engines have continued to grow in size, e�ciency, performance, and
diversity of services o�ered. Their success is attested by both their multipli-
cation and popularity.

The model behind search engines draws e�ciency by processing the infor-
mation in some collection of documents once, producing an index , and then
amortizing the cost of such processing over a large number of queries which
access the same index. The index is basically an inverted �le that maps each
word in the collection to the set of documents containing that word. Addi-
tional processing is normally involved by performance-improving steps such
as the removal of noise words, the con
ation of words via stemming and/or
the use of thesauri, and the use of the word weighting schemes.

This model, which is the source of search engines' success, is also in our
opinion the cause of their limitations. In fact it assumes that the collection is
static, as was the case for earlier information retrieval systems. In the case of
the Web, the collection is highly dynamic, with new documents being added,
deleted, changed, and moved all the time. Indices are thus reduced to \snap-
shots" of the Web. They are continuously updated by crawlers that attempt
to exhaustively visit and periodically revisit every Web page. At any given
time an index will be somewhat inaccurate (e.g., contain stale information
about recently deleted or moved documents) and somewhat incomplete (e.g.,
missing information about recently added or changed documents).

The above observations are quanti�ed in Sect. 1.3. The problem, com-
pounded by the huge size of the Web, is one of scalability. As a result, search
engines' capability to satisfy user queries is hindered. Users are normally
faced with very large hit lists, low recall (fraction of relevant pages that are
retrieved), even lower precision (fraction of retrieved pages that are relevant),
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and stale information. These factors make it necessary for users to invest sig-
ni�cant time in manually browsing the neighborhoods of (some subset of)
the hit list.

A way to partially address the scalability problems posed by the size and
dynamic nature of the Web is by decentralizing the index-building process.
Dividing the task into localized indexing, performed by a set of gatherers,
and centralized searching, performed by a set of brokers, has been suggested
since the early days of the Web by the Harvest project [5]. The success of this
approach has been hindered by the need for cooperation between information
providers and indexing crawlers.

A step toward enriching search engines with topological information about
linkage to achieve better precision has been suggested by the CLEVER group
at IBM Almaden Research Labs. The idea is to use hyperlinks to construct
\hub" and \authority" nodes from the Web graph and it has proven e�ective
in improving document retrieval and classi�cation performance [7, 6].

Autonomous agents, or semi-intelligent programs making automatic de-
cisions on behalf of the user, are viewed by many as a way of decreasing the
amount of human-computer interaction necessary to manage the increasing
amount of information available online [26]. Many such information agents,
more or less intelligent and more or less autonomous, have been developed in
the recent years. The great majority of them su�er from a common limitation:
their reliance on search engines. The limited coverage and recency of search
engines cannot be overcome by agents whose search process consists of sub-
mitting queries to search engines. However, many agents partially improve on
the quality of any search engine's performance by submitting queries to many
di�erent engines simultaneously. This technique, originally called metasearch
[32], has indeed proven to increase recall signi�cantly [42].

Typical examples of agents who rely on search engines to �nd informa-
tion on behalf of the users are homepage or paper �nders. CiteSeer [4] is an
autonomous Web agent for automatic retrieval and identi�cation of publica-
tions. Ahoy [38] is a homepage �nder based on metasearch engine plus some
heuristic local search. WebFind [33] is a similar locator of scienti�c papers,
but it relies on a di�erent information repository (net�nd) to bootstrap its
heuristic search. While agents like CiteSeer, Ahoy and WebFind may perform
some autonomous search from the pages returned by their initial sources, this
is strongly constrained by the repositories that provided their starting points,
and usually limited to servers known to them.

A di�erent class of agents are designed to learn user interests from brows-
ing for recommendations purposes. Syskill & Webert [34] is a system that
identi�es interesting Web sites from large domain-speci�c link lists by learn-
ing to rate them based on relevance feedback. WebWatcher [1, 18] is a tour
guide agent that learns from experience of multiple users by looking over their
shoulders while browsing. Then it provides users with suggestions about what
links to follow next. Similarly, Letizia (Chap. 12) is an autonomous interface
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agent that assists the user in browsing the Web by performing look-ahead
searches and making real-time recommendations for nearby pages that might
interest the user. WebMate [8] assists browsing by learning user preferences
in multiple domains, and assists searching by automatic keyword extraction
for query re�nement. All these agents learn to predict an objective function
online; they can also track time-varying user preferences. However, they need
supervision from the user in order to work; no truly autonomous search is
possible.

Amalthaea (Chap. 13) and Fab [3] share many features with the model
described in this chapter. They are multi-agent adaptive �ltering systems in-
spired by genetic algorithms, arti�cial life, and market models. Term weight-
ing and relevance feedback are used to adapt a matching between a set of
discovery agents (typically search engine parasites) and a set of user pro�les
(corresponding to single- or multiple-user interests). These systems can learn
to divide the problem into simpler subproblems, dealing with the heteroge-
neous and dynamic pro�les associated with long-standing queries. However
they share the weak points of other agents who perform no active autonomous
search, and therefore cannot improve on the limitations of the metasearch en-
gines they exploit.

Fish Search [10] is a search system inspired by some of the same ideas
from arti�cial life that motivated the research in this chapter. Fish Search is
based on a population of search agents who browse the Web autonomously,
driven by an internally generated energy measure based on relevance esti-
mations. The population is client-based, and uses a centralized cache for
e�ciency. Each agent has a �xed, nonadaptive strategy: a mixture of depth-
�rst-, breadth-�rst-, and best-�rst-search, with user-determined depth and
breadth cuto� levels. One di�culty of the Fish Search approach is in deter-
mining appropriate cuto� levels a priori, possibly resulting in load-unfriendly
search behaviors. Therefore Fish Search su�ers from limitations that are in
a sense opposite to those of all the previously discussed agents; all it does is
search, but it cannot adapt to user or environmental conditions.

1.3 Scalability

As was discussed in the previous section, scalability is a major issue limiting
the e�ectiveness of search engines. The factors contributing to the problem
are the large size of the Web, its rapid growth rate, and its highly dynamic
nature. The scalability problem is quanti�ed in a recent study by Lawrence
and Giles [20]. Their estimates of the current size (over 320 million pages) and
growth rate (1000% in a few years) of the Web attest to this environment's
increasing complexity.

Lawrence and Giles also measure the coverage and recency of six among
the most popular search engines. The coverage achieved by these search en-
gines varies approximately between 3% and 34% of the Web's indexable pages.
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Fig. 1.1. Scatter plot
of coverage versus
recency in six pop-
ular search engines:
Alta Vista, HotBot,
Northern Lights,
Excite, InfoSeek,
and Lycos. Data from
[20]. Linear regression
is also shown. The
correlation coe�cient
is -0.7.

An estimate of recency was obtained by counting the fraction of returned hits
corresponding to broken URLs, i.e., pages that have been deleted or moved.1

Among the search engines considered, the one with highest coverage also has
the most broken links (5%), and vice versa | the engine with lowest coverage
is the one with highest recency. Such a trade-o� between coverage and recency
is illustrated in Fig. 1.1. Coverage and recency are indeed anti-correlated, as
expected. Increasing the coverage of an index, given some limited bandwidth
resource, imposes a search engine's crawler to \spread itself thin" and update
pages less frequently, thus increasing the amount of stale information in the
index.

In order to keep indices as up-to-date as possible, crawlers have to revisit
documents often to see if they have been changed, moved, or deleted. Further,
crawlers have to try to exhaustively visit every new document to keep indices
as complete as possible. Such crawler behaviors impose signi�cant loads on
the net, as documents must be examined periodically. Heuristics are used to
estimate how frequently a document is changed and needs to be revisited, but
the accuracy of such statistics is highly volatile. The network load scales as
n=� , where n is the number of documents in the Web and � is the time scale
of the index, i.e. the mean time between visits to the same document. The
longer � , the more stale information found in the index. If q is the number
of queries answered by the search engine per unit time, then the amortized
cost of a query scales as n=q� .

Agents searching the Web online do not have a scalability problem be-
cause they search through the current environment and therefore do not run
into stale information. On the other hand, they are less e�cient than search
engines because they cannot amortize the cost of a search over many queries.
Assuming that users may be willing to cope with the longer wait for certain

1 URLs with changed content do not appear broken, therefore this method mea-
sures a lower bound on the amount of stale information in an index.
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queries that search engines cannot answer satisfactorily, one might ask, What
is the impact of online search agents on network load?

In our opinion, because of the scalability e�ect, making an index less
up-to-date can free up su�cient network resources to completely absorb the
impact of online searches. Consider increasing the � of a search engine by a
factor of (1+�), allowing the information in the index to become correspond-
ingly more stale. Maintaining a constant amortized cost per query, we could
now re�ne the results of each query with an online search using an amount
of network resources scaling as

n

q�
�

n

q� (1 + �)
�

n

q�

�

1 + �
:

As an example, imagine visiting 100 Web pages online for each query, and
accepting � = 1 (bringing � , say, from one to two weeks). This could be
achieved without impacting network load by satisfying the condition n=q� =
200. Assuming q� (the number of queries posed over a constant time interval)
is a constant, the current growth of the Web assures that the condition will
be met very soon. For Alta Vista, we recently estimated n=q� � 5 [11, 28];
even at a conservative growth rate of a doubling per year, the condition
would be met within at most 5 years.2 This simple argument, in our opinion,
shifts the question: we should not ask what is the network impact of online
search agents, but rather, What � achieves an appropriate balance between
the network loads imposed by search engines' crawlers and online agents?

We make the assumption in this chapter that as the Web continues to
grow and its dynamics become even more life-like, users will increasingly
rely on personalized tools in addition to global search engines. Under this
assumption, we envision that the relative load of the network will shift from
\dumb" crawlers to \smart" browsing agents, while users will develop a more
distal relationship with the information sources by way of trusted (agent)
intermediaries. But this vision can become reality only when agents will o�er
the capability to add the value of scalability to search engines. We must
therefore prove that an agent-based solution can indeed reach beyond search
engines and e�ectively locate information unknown to them.

1.4 InfoSpiders

Let us operationalize the ideas discussed in the previous section into an agent
framework. The goal addressed in this chapter is to achieve scalable Web
search by complementing search engines with an agent-based algorithm. The
agent collective is endowed with a distributed adaptive representation, aim-
ing to take advantage of both the statistical (word) and structural (link)

2 If we consider the coverage factor of 3 due to the discrepancy between the n of
the search engine and the actual size of the Web, the condition will be met a lot
sooner.
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topology of the Web. We have argued that the agents in such collective must
be autonomous, online, situated, personal browsers [30].

Our approach is therefore based on the idea of a multi-agent system. The
problem is decomposed into simpler subproblems, each addressed by one of
many simple agents performing simple operations. The divide-and-conquer
philosophy drives this view. Each agent will \live" browsing from document
to document online, making autonomous decisions about which links to fol-
low, and adjusting its strategy to both local context and the personal prefer-
ences of the user. Population-wide dynamics will bias the search toward more
promising areas.

In this framework, both individual agents and populations must adapt .
Individually learned solutions (e.g., by reinforcement learning) cannot cap-
ture global features about the search space or the user. They cannot \cover"
heterogeneous solutions without complicated internal models of the environ-
ment; such models would make the learning problem more di�cult. On the
other hand, if we allowed for population-based adaptation alone (e.g., by
an evolutionary algorithm), the system might be prone to premature con-
vergence. Genetically evolved solutions would also re
ect an inappropriate
coarseness of scale, due to individual agents' incapability to learn during
their lives. Incidentally, these are the same reasons that have motivated the
hybridization of genetic algorithms with local search [16], and re
ect the gen-
eral problem of machine learning techniques in environments with very large
feature space dimensionalities [21, 22].

The approach and methods introduced above have been applied in the
construction of populations of adaptive information agents. The InfoSpiders
system was implemented to test the feasibility, e�ciency, and performance
of adaptive, online, browsing, situated, personal agents in the Web. In this
section we outline the InfoSpiders implementation and brie
y describe the
distributed evolutionary algorithm and agent representation used. A more
detailed account can be found elsewhere [28].

1.4.1 Algorithm

Distributed search in networked environments is a multimodal problem that
presents many of the characteristics making it an ideal target for local selec-
tion algorithms [31]. This task requires a heterogeneous cover of the search
space rather than a convergence to the perceived global optimum. Indeed it
can easily be cast into a graph search framework, in which local selection
algorithms have proven very e�ective [31, 28].

InfoSpiders search online for information relevant to the user, by mak-
ing autonomous decisions about what links to follow. How long should an
agent live before being evaluated? What global decisions can be made about
which agents should die and which should reproduce, in order to bias the
search optimally? No answer to these questions would appear satisfactory.
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InfoSpiders(query, starting_urls, MAX_PAGES, REL_FBK_FLAG) {
for agent (1..INIT_POP) {

initialize(agent, query);
situate(agent, starting_urls);
agent.energy := THETA / 2;

}
while (pop_size > 0 and visited < MAX_PAGES) {

foreach agent {
pick_outlink_from_current_document(agent);
agent.doc := fetch_new_document(agent);
agent.energy += benefit(agent.doc) - cost(agent.doc);
apply_Q_learning(agent, benefit(agent.doc));
if (agent.energy >= THETA) {

offspring := mutate(recombine(clone(agent)));
offspring.energy := agent.energy / 2;
agent.energy -= offspring.energy;
birth(offspring);

}
elseif (agent.energy <= 0) death(agent);

}
if (REL_FBK_FLAG) process_relevance_feedback(input);

}
}

Fig. 1.2. Pseudocode of the InfoSpiders algorithm for distributed information
agents. This is an instance of an evolutionary algorithm based on local selection.

Fortunately, the local selection algorithm provides us with a way to remain
agnostic about these questions. Such an algorithm is shown in Fig. 1.2.

The user initially provides a list of keywords (query) and a list of starting
points, in the form of a bookmark �le. This list could typically be obtained by
consulting a search engine. First, the population is initialized by pre-fetching
the starting documents. Each agent is \positioned" at one of these document
and given a random behavior (depending on the representation of agents)
and an initial reservoir of energy. The user also provides a maximumnumber
of pages that the population of agents are allowed to visit, collectively. This
would depend on how long the user is willing to wait, or how much bandwidth
she is willing to consume. Finally, the user may specify whether and how often
she is willing to provide the population with relevance feedback, to help focus
or shift the search toward relevant areas by \replenishing" the resources in
those areas. This chapter does not discuss the use of relevance feedback in
depth, as relevance feedback is not used in the reported case study.

In the innermost loop of Fig. 1.2, an agent \senses" its local neighborhood
by analyzing the text of the document where it is currently situated. This
way, the relevance of all neighboring documents | those pointed to by the
hyperlinks in the current document | is estimated. Based on these link
relevance estimates, the agent \moves" by choosing and following one of the
links from the current document.
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The agent's energy is then updated. Energy is needed in order to survive
and move, i.e., continue to visit documents on behalf of the user. Agents
are rewarded with energy if the visited documents appear to be relevant.
The benefit() function is used by an agent to estimate the relevance of
documents. In the absence of relevance feedback, this function return a non-
zero value only if the document had not been previously visited by any agent,
and according to a standard measure of similarity between the query and the
document. The \marking" of visited pages models the consumption of �nite
information resources and is implemented via a cache, which also speeds up
the process by minimizing duplicate transfers of documents.3

Agents are charged energy for the network load incurred by transferring
documents. The cost() function should depend on used resources, for exam-
ple transfer latency or document size. For simplicity we assume a constant
cost for accessing any new document, and a smaller constant cost for access-
ing the cache; this way stationary behaviors, such as going back and forth
between a pair of documents, are naturally discouraged.

Instantaneous changes of energy are used as reinforcement signals. This
way agents adapt during their lifetime by Q-learning [44]. This adaptive pro-
cess allows an agent to modify its behavior based on prior experience, by
learning to predict the best links to follow.

Local selection means that an agent is selected for reproduction based on
a comparison between its current energy level and a constant that is inde-
pendent of the other agents in the population. Similarly, an agent is killed
when it runs out of energy. At reproduction, agents may be recombined by
the use of one of two types of crossover. In the case study illustrated later
in the chapter, an agent may recombine with any other agent in the popula-
tion, selected at random. O�spring are also mutated, providing the variation
necessary for adapting agents by way of evolution. Energy is conserved at all
reproduction events.

The output of the algorithm is a 
ux of links to documents, ranked ac-
cording to estimated relevance. The algorithm stops when the population
goes extinct for lack of relevant information resources, visits MAX PAGES doc-
uments, or is terminated by the user.

1.4.2 Agent architecture

Figure 1.3 illustrates the architecture of each InfoSpiders agent. The agent
interacts with the information environment, that consists of the actual net-
worked collection (the Web) plus data kept on local disks (e.g., relevance
feedback data and cache �les). The user interacts with the environment by

3 While in the current client-based implementation of InfoSpiders this poses no
problem, caching is a form of communication and thus a bottleneck for the
performance of distributed agents. In a distributed implementation, we imagine
that agents will have local caches.
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Fig. 1.3. Architec-
ture of an InfoSpiders
agent. From [30].

accessing data on the local client (current status of a search) and on the Web
(viewing a document suggested by agents) and by making relevance assess-
ments that are saved locally on the client and will be accessed by agents as
they subsequently report to the user/client. There is no direct interaction
between the user and the agents after the initial submission of the query and
starting points.

The InfoSpiders prototype runs on UNIX and MacOS platforms. The Web
interface is based on the W3C library [43]. Agents employ standard information
retrieval tools such as a �lter for noise words [14] and a stemmer based
on Porter's algorithm [15]. They store an e�cient representation of visited
documents in the shared cache on the client machine. Each document is
represented by a list of links and stemmed keywords. If the cache reaches its
size limit, the LRU (least recently used) replacement strategy is used. In the
case study illustrated later in the chapter, the cache can grow arbitrarily.

1.4.3 Adaptive representation

Figure 1.3 highlights the central dependence of the InfoSpiders system on
agent representation. The adaptive representation of InfoSpiders consists of
the genotype, that determines the behavior of an agent and is passed on
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Fig. 1.4. How an
agent estimates each
link from the current
document. For each
link in the document,
each input of the neu-
ral net is computed
by counting the doc-
ument words match-
ing the keyword cor-
responding to that
input, with weights
that decay with dis-
tance from the link.

to o�spring at reproduction; and of the actual mechanisms by which the
genotype is used for implementing search strategies.

The �rst component of an agent's genotype consists of the parameter
� 2 <+. Roughly, it represents the degree to which an agent trusts the
descriptions that a page contains about its outgoing links. � is initialized
with �0.

Each agent's genotype also contains a list of keywords, initialized with the
query terms. Since feed-forward neural nets are a general, versatile model of
adaptive functions, we use them as a standard computation device. Therefore
genotypes also comprise a vector or real-valued weights, initialized randomly
with uniform distribution in a small interval [�w0;+w0]. The keywords rep-
resent an agent's opinion of what terms best discriminate documents relevant
to the user from the rest. The weights represent the interactions of such terms
with respect to relevance. The neural net has a real-valued input for each key-
word in its genotype and a single output unit. We want to allow the inputs
and activation values of the network to take negative values, corresponding to
the possibly negative correlations perceived between terms and relevance. For
this reason the network uses the hyperbolic tangent as its squashing function,
with inputs and activation values in [�1;+1].

An agent performs action selection by �rst computing the relevance es-
timates for each outgoing link from the current document. This is done by
feeding into the agent's neural net activity corresponding to the small set
of (genetically speci�ed) keywords to which it is sensitive. Each input unit
of the neural net receives a weighted count of the frequency with which the
keyword occurs in the vicinity of the link to be traversed. In the experiments
reported here, we use a distance weighting function which is biased towards
keyword occurrences most close to the link in question.

More speci�cally, for link l and for each keyword k, the neural net receives
input:
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ink;l =
X

i:dist(ki;l)��

1

dist(ki; l)

where ki is the ith occurrence of k in D and dist(ki; l) is a simple count of
other, intervening links (up to a maximum window size of �� links away).
The neural network then sums activity across all of its inputs; each unit j
computes activation

tanh(bj +
X
k

wjkin
l
k)

where bj is its bias term, wjk are its incoming weights, and inlk its inputs from
the lower layer. The output of the network is the activation of the output
unit, �l. The process is illustrated in Fig. 1.4 and is repeated for each link
in the current document. Then, the agent uses a stochastic selector to pick a
link with probability distribution:

Pr[l] =
e��lP

l02D e��l0
:

After a link has been chosen and the corresponding new document has
been visited, the agent has to determine the corresponding energy gain. For
a previously unvisited document,

benefit(D) = tanh

 X
k2D

freq(k;D) � Ik

!

where freq(k;D) is the frequency of term k in document D normalized by
document size, and Ik is the weight of term k. In the absence of relevance
feedback, Ik = 1 if k is in the query and Ik = 0 otherwise.4

The agent then compares the (estimated) relevance of the current docu-
ment with the estimate of the link that led to it. By using the connectionist
version of Q-learning [23], the neural net can be trained online to predict
values of links based on local context. After the agent visits document D, the
value returned by the benefit() function is used as an internally generated
reinforcement signal to compute a teaching error:

�(D) = benefit(D)+ � �max
l2D
f�lg � �D

where � is a future discount factor and �D the prediction from the link that
was followed to get to D. The neural net's weights are then updated by back-
propagation of error [36]. Learned changes to the weights are \Lamarckian"
in that they are inherited by o�spring at reproduction. In the absence of rel-
evance feedback this learning scheme is completely unsupervised, in keeping
with the autonomy of InfoSpiders.

4 If the user provides relevance assessments, Ik becomes an algebraic extension
of the TFIDF (term frequency-inverse document frequency) index weighting
scheme, allowing for negative relevance feedback and consequent energy losses.
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InfoSpiders adapt not only by learning neural net weights, but also by
evolving all of the genotype components | �, the neural net, and the key-
word representation. At reproduction, the o�spring clone is recombined with
another agent. Two-point crossover is applied to the keywords of the clone,
so that a subset of the mate's keywords is spliced into the o�spring's keyword
vector.

Then mutations are applied. If a0 is an o�spring of a:

�a0  U [�a(1� ��); �a(1 + ��)] :

The values of � are clipped to �max to maintain some exploratory behavior.
The neural net is mutated by adding random noise to a fraction �w of the
weights. For each of these network connections, i:

wi
a0  U [wi

a(1� �w); w
i
a(1 + �w)] :

U is the uniform distribution and �� ; �w 2 [0; 1] are parameters.
The keyword vector is mutated with probability �k. The least useful (dis-

criminating) term argmink2a0(jIkj) is replaced by a term expected to better
justify the agent's performance with respect to the user assessments. Ties are
broken randomly. In order to keep any single keyword from taking over the
whole genotype, this mutation is also stochastic; a new term is selected with
probability distribution

Pr[k] / freq(k;D) � �<1(jIkj+ �)

�<1(x) �

�
x if x < 1
1 otherwise

where D is the document of birth and � 2 [0; 1] is a parameter. The �rst
factor captures the local context by selecting a word that describes well the
document that led to the energy increase resulting in the reproduction. The
second factor, in the presence of relevance feedback, captures the global con-
text set by the user by selecting a word that discriminates well the user's
preferences. The parameter � regulates the amount of supervised (small �)
versus unsupervised (large �) keyword mutation; if � = 0, only keywords im-
portant to the user can be internalized, while if � > 0 new keywords can be
internalized based on local environmental context alone. Learning will take
care of adjusting the neural net weights to the new keyword.

The evolution of keyword representations via local selection, mutation and
crossover implements a form of selective query expansion. Based on relevance
feedback and local context, the query can adapt over time and across di�erent
places. The population of agents thus embodies a distributed, heterogeneous
model of relevance that may comprise many di�erent and possibly inconsis-
tent features. But each agent focuses on a small set of features, maintaining
a well-de�ned model that remains manageable in the face of the huge feature
dimensionality of the search space.
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1.5 Case study

In this section we want to illustrate how scalability in Web search can be
achieved using InfoSpiders as a front-end to a traditional search engine. We
do this with a case study, corresponding to a query that search engines cannot
satisfy alone.

Table 1.1. InfoSpiders parameter descriptions and values.

Parameter Value Description
MAX PAGES 200 Max number of new pages visited per query
REL FBK FLAG FALSE Relevance feedback disabled
INIT POP 10 Initial population size
THETA 2.0 Reproduction threshold
CACHE SIZE MAX PAGES E�ectively unbounded cache
cn 0.01 Energy cost per new document
co 0.0001 Energy cost per cached document
�0 4.0 Initial �
�� 0.5 � mutation range
�max 5.0 Max �

� 5 Half-size of link estimation sliding window
�k 0.0 Keyword mutation rate
Nlayers 2 Neural net layers (excluding inputs)
w0 0.5 Initial neural net weight range
�w 0.2 Neural net weight mutation rate
�w 0.25 Neural net weight mutations range
� 0.05 Neural net Q-learning rate
� 0.5 Q-learning discounting factor

In order to keep the analysis of our case study as simple as possible, agents
are disallowed to di�erentiate on the basis of keyword vectors; all InfoSpiders
focus on the same terms over time. The neural nets are allowed to adapt
by evolution and reinforcement learning, and the � gene can evolve as well.
The cache size is large enough to contain all the visited documents. Table
1.1 shows the values of the main parameters discussed in Sect. 1.4 and their
default values used in the case study.

1.5.1 Search engine defeat

Pat is a prospective student in a database class o�ered at the Univer-
sity of Iowa, and has heard from a friend the name of the instructor who
will be teaching the course. Pat wants to �nd out about the class in or-
der to make an informed decision before registering for the class. Having
access to the Web, Pat submits a query to a search engine, say, Excite
[13]. The query is reasonable: SYLLABUS OF DATABASE CLASS PROF FILIPPO
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Fig. 1.5. The top
ten hits returned by
Excite in response to
Pat's query and fed to
InfoSpiders as a list
of starting URLs. The
HTML source �le has
been edited for read-
ability.

MENCZER IS TEACHING. Unfortunately, Excite does not return any page that
seems relevant.5

In fact, the class syllabus has been available on the Web for a couple
of weeks already, and there is a pointer to it from the homepage of the
department o�ering the course. However, because of the limited coverage
and recency of search engines, the three documents with the information
sought by Pat (the relevant set) have not yet been found by any crawler and
therefore the pages are not indexed in any search engine. All major search
engines, including MetaCrawler [32], return large hit lists with zero precision
and zero recall.

1.5.2 InfoSpiders to the rescue

For the purpose of this case study, we assume that Pat is a very busy student
who cannot a�ord to spend much time manually sur�ng the net in search of
class information. Before giving up, however, Pat decides to try launching a
search with the InfoSpiders tool that (coincidence!) is available on the local
computer. InfoSpiders need a list of starting points, in the form of a bookmark
or hit list �le. Pat uses the �rst page of hits returned by Excite, shown in
Fig. 1.5.

Ten InfoSpiders are initialized, one at each of the top ten URLs returned
by Excite. They all share the same keyword vector, whose components cor-
respond to the query terms (after �ltering out noise words and stemming).
The log �le created during the InfoSpiders search is partially shown in Fig.
1.6. It shows that some of the starting points are perceived as dead ends
by InfoSpiders, and discarded.6 This happens, for example, for broken links
yielding a \404 Not Found" error. Such dead ends need to be discarded only

5 Unbeknownst to Pat, none of the other major search engines would have done
any better.

6 The crude parser in the current prototype fails to recognize relative URLs, as
well as anchors with incorrect syntax.
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Fig. 1.6. InfoSpiders
log �le for the search
launched by Pat. The
�le has been edited
for brevity. The rele-
vant URLs appear as
entries 22, 33, and 66
in the log sequence.

from the starting points; later on they pose no problem because InfoSpiders
can always follow a special back link.

After fetching the starting URLs, InfoSpiders begin to browse autono-
mously. Certain pages contain the query words and yield energy used by the
agents to prolong their survival in those neighborhoods. Eventually, after 66
pages have been visited, InfoSpiders locate all three relevant documents. This
takes less than 9 minutes of search time. Of course InfoSpiders do not know
the size of the relevant set, and continue to search as long as they live (or
until, in this case, 200 pages are visited over night).

The next morning, Pat �nds the report of the InfoSpiders search. The re-
sult is shown in Fig. 1.7. The visited pages are ranked by estimated relevance
| in this case simply by their similarity to the query; the cosine matching
score is listed next to each visited page. Two of the three relevant documents
(those containing query terms) are ranked in the top ten positions (3 and 7)
while the third appears later in the list.

By combining the starting points provided by the search engine and the
online search provided by InfoSpiders, Pat has found all of the needed infor-
mation and decides to enroll in the class. This result could not have been
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Fig. 1.7. Report of
the InfoSpiders search
launched by Pat. The
original HTML docu-
ment created by In-
foSpiders has been
edited for brevity and
is viewed through a
browser.

reached through search engines alone, at the time when Pat's information
need arose. It could have been achieved by manually browsing through the
top pages returned by Excite, but this is a very time-consuming activity |
one better delegated to intelligent information agents!

1.6 Discussion

If InfoSpiders overcome the scalability limitation of search engines, why use
search engines at all? We want to brie
y discuss the issue of topology, in
support of our view that the two approaches are really complementary to each
other, and either one alone is insu�cient to achieve scalable search. In this
section we also summarize some more quantitative results previously obtained
by InfoSpiders, since the case study described above is merely intended as a
qualitative illustration of the scalability argument. We conclude with a look
at the future.

1.6.1 Links vs. words

Indexing can be described as the process of building a statistical topology
over a document space. A search engine will show similar documents next
to each other, e�ectively creating on the 
y a topology based on their word
statistics. This is a very useful model because the user can immediately make
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assumptions about the contents of retrieved documents, for example about
the fact that they contain certain words.

However, networked information environments contain additional struc-
ture information, which can be used to provide browsing users (or agents)
with helpful cues. Here we focus on linkage information that is at the basis
of hypertext markup languages such as those used in the Web. One cannot
submit to search engines queries like \Give me all documents k links away
from this one," because the space to store such information would scale ex-
ponentially with k.7

While much linkage information is lost in the construction of indices, it is
there to be exploited by browsing users, who in fact navigate from document
to document following links. We have argued that linkage topology | the
spatial structure in which two documents are as far from each other as the
number of links that must be traversed to go from one to the other | is
indeed a very precious asset on the Web. Even in unstructured portions of
the Web, authors tend to cluster documents about related topics by letting
them point to each other via links, as con�rmed by bibliometric studies of
the Web [19]. Such linkage topology is useful inasmuch as browsers have a
better-than-random expectation that following links can provide them with
guidance | if this were not the case, browsing would be a waste of time!

Let us quantify the notion of value added by linkage topology. We have
conjectured that such value can be captured by the extent to which linkage
topology \preserves" relevance (with respect to some query) [28]. Imagine
a browsing user or agent following a random walk strategy.8 First de�ne R
as the conditional probability that following a random link from the current
document will lead to a relevant document, given that the current document
is relevant. We call R relevance autocorrelation. Then de�ne G as the proba-
bility that any document is relevant, or equivalently the fraction of relevant
documents. We call G generality (of the query) [37].

For the random browser, the probability of �nding a relevant document
is given by

� = �R+ (1� �)G ;

where � is the probability that the current document is relevant. If linkage
topology has any value for the random browser, then browsing will lead to
relevant documents with higher than random frequency. In order for this to
occur the inequality

�=G > 1

must hold, which upon simplifying for � is equivalent to

R=G > 1 :

7 Several search engines now allow such queries for k = 1.
8 We make the conservative assumption of random walk to obtain a lower bound
for the value added of linkage topology.
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This linkage topology conjecture is equivalent to the cluster hypothesis [41]
under a hypertext derived de�nition of association. We can then express the
linkage topology value added by de�ning the quantity

� � R=G� 1 :

As a reality check, we measured � for a few queries from a couple of search
engines [27]. Relevance autocorrelation statistics were collected by counting
the fraction of links, from documents in each relevant set, pointing back
to documents in the set. Generality statistics were collected by normalizing
the size of the relevant sets by the size of the collections. These were quite
gross measurements, but their positive values support our conjecture about
the value added by linkage topology: in Lycos [25], for example, we found
� = (9� 3) � 103 � 0.

Linkage topology also has been considered by others in the context of
the Web, with di�erent motivations. Links have been used for enhancing
relevance judgments [35, 45], incorporated into query formulation to improve
searching [2, 39], and exploited to determine \hub" and \authority" pages
for document categorization and discovery [7, 6].

If links constitute useful cues for navigation, they can be exploited by
autonomous browsing agents just as they are by browsing users | indeed,
even the dumbest of agents (random walkers) can exploit linkage information.
In fact, the random walk model may turn out to be more than just a lower
bound for browsing behavior. Huberman et al. [17] argue that it is a very
good predictive model of human browsing behavior. They assume that the
value (e.g., relevance) of pages along the browsing path of a user follows a
random walk of the form:

VL = VL�1 + �L

where L is the depth along the path and �L is a random variable drawn from a
normal distribution @(�; �2). This equation is stronger than our linkage con-
jecture, since it implies a positive correlation between VL and VL�1 (equiv-
alent to our relevance autocorrelation) for any � > 0. Huberman et al. �nd
that the inverse-gaussian distribution of sur�ng depth (clicks per Web site)
derived from the above random walk equation accurately �ts experimental
data on sur�ng behavior, and therefore they call such a distribution a univer-
sal law of sur�ng. Although our conjecture on the value of linkage topology
is more modest, it �nds strong support in these �ndings. Furthermore, the
random-walk assumption implies normative models for constructing browsing
agents who make optimal local decisions about when to stop sur�ng, in much
the same way in which real options are evaluated in �nancial markets [24].
Thus we feel justi�ed in our con�dence that browsing is not an unreasonable
task for autonomous agents.

Linkage topology is not a su�cient condition for an e�ective search, how-
ever. For a given query q, it seems plausible that relevance autocorrelation
decays rapidly for distances greater than some correlation distance �R;q. If
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an agent is farther than�R;q links away from a relevant document, the search
is blind. Since �R;q is unknown, there is no way to estimate the necessary
amount of energy with which to initially endow agents at any arbitrary start-
ing point. If such amount is underestimated, extinction will ensue before any
relevant document is located. And if it is overestimated, resources will be
unnecessarily wasted searching through unlikely neighborhoods.

It appears then crucial to launch InfoSpiders from \good" starting points.
By this we mean that a starting point should be within a radius �R;q of a
target page. Our previous experiments (see the next subsection) quantita-
tively con�rm this necessity. A naive way to meet this condition would be to
start from pages with very high numbers of out-links. This is not a solution,
however, because the probability of choosing an appropriate link from such
a page decreases in proportion to its fan-out.

Search engines, on the other hand, can rely on statistical topology to
provide for good starting points. Even if the index does not contain the target,
it probably contains pages within a radius �R;q of it. We are assured that the
pages returned by the engine contain the query words. Linkage topology can
then lead the agents in the right direction. We conclude that the information
encoded by statistical and linkage topologies are complementary | search
engines and browsing agents should work together to serve the user most
e�ectively.

1.6.2 Previous results

The InfoSpiders system was evaluated, at both the level of the population
and of single agents, on a more limited and controlled subset than the whole
Web. A subset of the Encyclopaedia Britannica [12] was chosen, among other
methodological reasons, because of its reliable and readily available relevant
sets corresponding to a large number of test queries. Each query had a depth
describing the minimumdistance between the starting points and the relevant
set. Depth was roughly inverse to generality | deeper queries were more
speci�c and their smaller relevant sets added to their di�culty.

The collective performance of InfoSpiders was assessed, and compared
to other search algorithms, by a variation of the search length metric [9].
We measured the total number of pages visited by InfoSpiders before some
fraction of the relevant set was discovered. As a sanity check, InfoSpiders were
�rst compared against a simple non-adaptive algorithm, breadth-�rst-search
[29]. In this experiment the use of the centralized cache was allowed, so that
only new pages counted toward the search length. Encouragingly, the search
length of InfoSpiders across the whole depth spectrum was as much as an
order of magnitude shorter than that achieved by breadth-�rst-search.

In a second series of experiments, distributed InfoSpiders were compared
against a priority-queue implementation of best-�rst-search [30]. This algo-
rithm used the InfoSpiders machinery at the agent level, combined with a
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Fig. 1.8. Performance of unsupervised InfoSpiders versus best-�rst-search. Non-
completed queries were those for which InfoSpiders ran out of time, or went extinct;
and for which best-�rst-search ran out of time, or became engulfed in previously
visited areas. Search length was averaged over same-depth queries, and error bars
correspond to standard errors. The implementation used in this experiment simu-
lated distributed execution of agents across servers. Therefore InfoSpiders had no
cache and counted all (new and old) pages visited; but search length was measured
concurrently, i.e., taking the maximum parallel length across all agent lineages.

globally-optimum heuristic to decide the order in which to visit the pages.9

The results, partly reproduced in Fig. 1.8, were illuminating. For the more
general queries InfoSpiders had a signi�cant advantage over best-�rst-search,
while for the deepest queries the situation was reversed. Furthermore, both al-
gorithms degraded in performance with increasing depth, i.e., they succeeded
less frequently at locating the required fraction of relevant documents. These
results support our argument of the previous section, in favor of using search
engines to provide InfoSpiders with good starting points.

Focusing our analysis at the level of single agents, we also observed in-
dividual agents in the course of single search runs to evaluate whether they
were capable of internalizing spatially and temporally local features (words)
from the environment into their adaptive search behaviors [30, 28]. In fact, we
found that two agents born at the same time but in di�erent places (pages)
had adapted to the spatial context in which they had evolved. Their keyword
vectors contained di�erent words that were locally correlated with relevance,
in their respective neighborhoods. Similarly, along the temporal dimension,
two agents born on the same page but at a di�erent times were subject to
di�erent user assessments; the di�erent keywords appearing in their represen-
tations were consistent with the shifting importance associated with locally
occurring terms in their respective temporal contexts. Finally, two agents
born at the same time and in the same place learned during their lifetimes dif-
ferent neural net weights for the same keywords, re
ecting the reinforcement

9 InfoSpiders can implement a search strategy similar to best-�rst-search by evolv-
ing high values for the � gene, but only from the local \perspective" of single
agents; best-�rst-search is an upper bound for global search algorithms.
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Fig. 1.9. Internalization of spatial, temporal, and experiential context. An agent's
representation is shown along with its page of birth. This agent retained some of the
original query words (shown as shaded input units) that were locally relevant, but
eliminated others in favor of terms that better correlated locally with relevance.
One of these (marked by a star) was the product of a new mutation, capturing
the occurrence of this term in the page whose relevance resulted in the agent's
birth. Relevance was part of the temporal context because it was determined by
user feedback. The weights of the neural net (in this case a simple perceptron) will
eventually encode the relative importance attributed to the keywords.

signals provided to Q-learning by their respective life experiences. Figure 1.9
illustrates these observations.

1.6.3 The role of context

The results just described point to some other limitations of search engines,
besides those of scalability. Adaptive information agents can further improve
on search engines with their capability to deal with context .

All samples of language, including the Web pages indexed by search en-
gines, depend heavily on shared context for comprehension. An author must
make assumptions about the intended audience of a document, and when the
latter appears in a \traditional" medium (conference proceedings, academic
journal, etc.) it is likely that typical readers will understand it as intended.
But the Web brings to the document a huge new audience, a good part of
which will not share the author's intended context.

These vague linguistic concerns have concrete manifestation in the global
word frequency statistics collected by search engines. The utility of an index
term, as a discriminator of relevant from irrelevant items, can become a
muddy average of its application across multiple, distinct sub-corpora within
which these words have more focused meaning [40].

Situated agents, on the other hand, can rely on local coherence in keyword
distributions by exploiting their linkage topology. Over time, agents may
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come to internalize the features that best describe the current documents
and discriminate relevant pages. For example, agents browsing through pages
about \rock climbing" and \rock'n'roll" should attribute di�erent weights to
the word \rock" depending on whether the query they are trying to satisfy is
about music or sports. The neighborhood where an agent is situated in the
environment provides it with the local context within which to analyze word
meanings. Conversely, the words that surround links in a document provide
an agent with valuable information to guide its path decisions.

Indices are also constructed without knowledge of the particular queries
that they will answer, or of the users posing them. A universal ranking scheme
may be generally good but probably will not be the best for each speci�c
query or particular user. Conversely, personal agents may adapt to a user's
interests, even if they change over time. They can internalize the user's pref-
erences with respect to, e.g., vocabulary, word disambiguation, and relative
importance of terms.

1.6.4 The future

This chapter has discussed the scalability limitation of search engines and
suggested a solution based on populations of adaptive information agents.
The case study of Sect. 1.5 has illustrated the potential search scalability
achievable through the synergy between search engines and online browsing
agents.

The viability of adaptive information agents in achieving scalable Web
search, however, cannot be demonstrated with anecdotal evidence. Quanti-
tative con�rmation of the ideas discussed in this chapter must be sought
through extensive testing on the Web. One experiment would have human
browsers and InfoSpiders compete in locating documents not indexed by
search engines. Another approach would be to create a new page and measure
how long it takes, on average, until it is found by a crawler (provided it is
not directly submitted to it by the author); this time can be compared to the
average time it takes InfoSpiders to �nd the page, starting from appropriate
queries and di�erent hit lists derived from search engines.

Continued development of the InfoSpiders prototype (starting with an
urgent upgrade of the HTML parser) is a precondition for such experiments
and thus represents an important goal for the near future. Many aspects of
the model also remain to be explored in the \real world," from unsupervised
query expansion to shifting relevance feedback under long-standing queries;
from parameter optimization to the role of recombination; and from the e�ect
of cache size to di�erential costs under distributed implementations.

Beyond such explorations, we envision that in the growing and increas-
ingly complex Web of information, users will have to rely heavily on adaptive
personal agents. People will need to trust their agents and delegate more
and more of their tedious tasks to them. This will shift the load of the net-
work from today's bulk of human and \dumb" crawlers to more intelligent
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agents, possibly exchanging information autonomously on their owners' be-
half. Agents will thus shift the boundary between our brain and the world;
hopefully we will be able to make a better use of our precious time and
cognitive skills.
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