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Abstract

Local selection is a simple selection scheme in evolutionary computation. Individual fit-
nesses are accumulated over time and compared to a fixed threshold, rather than to each
other, to decide who gets to reproduce. Local selection, coupled with fitness functions
stemming from the consumption of finite shared environmental resources, maintains di-
versity in a way similar to fitness sharing. However, it is more efficient than fitness sharing
and lends itself to parallel implementations for distributed tasks. While local selection is
not prone to premature convergence, it applies minimal selection pressure to the popula-
tion. Local selection is, therefore, particularly suited to Pareto optimization or problem
classes where diverse solutions must be covered. This paper introduces ELSA, an evo-
lutionary algorithm employing local selection and outlines three experiments in which
ELSA is applied to multiobjective problems: a multimodal graph search problem, and two
Pareto optimization problems. In all these experiments, ELSA significantly outperforms
other well-known evolutionary algorithms. The paper also discusses scalability, parameter
dependence, and the potential distributed applications of the algorithm.
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1 Introduction

While looking for problem solutions that simultaneously satisfy many objectives, we might
find multiple solutions, each of which meets some criteria better than others, but none of
which completely satisfies all of the criteria. Such problems are called multicriterion, multi-
objective, or Pareto optimization. If we know some good way to combine the performance
of a solution with respect to the various criteria, then we can optimize a single combined
fitness function, and there are many techniques (including evolutionary computation) that
apply. If we do not know how different criteria should be combined, then we need to find
a set of solutions that represents the best compromises between the conflicting criteria.
Such set is called Pareto optimal, and the corresponding vector in objective space is called
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Pareto front. By quickly locating a set of solutions approximating the Pareto optimal set of
a multicriterion optimization problem, we can devote effort to additional, possibly more
expensive evaluations of the various alternatives and their trade-offs.

Evolutionary algorithms (EAs) are based on the idea that a population searches the
space in a parallel fashion, and therefore they seem amenable to Pareto optimization. The
population of solutions at a given time may be used to represent the current consensus on
the set of solutions deserving further attention. Ideally, the population would converge not
to a single point, but to the entire Pareto front.

Many characteristics of EAs have been considered in the search for ways to devise
efficient and effective Pareto optimization algorithms. Selection schemes have emerged as
the aspect of evolutionary computation that most directly addresses the issue of multicrite-
rion optimization. In fact, selective pressure determines how fast the population converges
to a solution. Even in standard (single-criterion) optimization, the exploration-exploitation
dilemma is commonly invoked to explain the delicate tension between an algorithm’s effi-
ciency and its tendency to prematurely converge to a suboptimal solution.

This paper discusses the locality of a selection scheme and its effect on an EA’s behav-
ior with respect to convergence, performance, efficiency, and scalability. We can loosely
define local selection (LS) as a selection scheme that minimizes interactions among individual
solutions. The issue of locality in selection schemes is certainly not new in the Evolutionary
Computation community (Goldberg and Deb, 1991; Gordon and Whitley, 1993; De Jong
and Sarma, 1995; Mahfoud, 1995). Parallel EAs often impose geographic constraints on
evolutionary search (Grosso, 1985; Davidor, 1991). The goal is to limit the communi-
cation overhead by forming diverse subpopulations and allocating different processors to
them; as inter-process dependencies decrease, higher parallel speedups can be achieved.
The resulting local selection schemes are found to be more amenable to cover optimization
(many good solutions being represented in the population) than to convergence (all individ-
uals converging on the best solution). For example, applying a parallel EA to optimize a
bimodal fitness function, traditional selection schemes such as truncation, linear rank, and
proportional selection cause the population to rapidly converge to one mode of the fitness
function or the other, while local selection strategies generate two separate populations that
have converged, each to a separate peak (McInerney, 1992).

The problem of ill-convergence exhibited by global selection schemes for multimodal
and multicriterion fitness functions is related to the issue of niching:

As reproduction, crossover, and mutation proceed, the population climbs the
[fitness] hills, ultimately distributing most of the strings near the top of one
hill [. . . ] This ultimate convergence on one peak or another without differential
advantage is caused by genetic drift—stochastic errors in sampling caused by small
population sizes. Somehow we would like to reduce the effect of these errors and
enable stable subpopulations to form around each peak [. . . ] We also might like
to modify the performance of simple evolutionary algorithms in multicriterion
problems where the peaks are not all of the same magnitude [. . . ] Perhaps we
would even like to allocate subpopulations to peaks in proportion to their magnitude
[. . . ] (Goldberg, 1989, 185–197)

Although there is well-developed, biological literature in both niching and specia-
tion (Hartl and Clarke, 1989), its transfer to the artificial evolutionary search has been
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limited (Goldberg, 1989). Plain EAs are ineffective for niching or multicriterion function
optimization, due to high selective pressure and premature convergence (Eshelman and
Schaffer, 1993). Several methods have been devised to deal with this problem by main-
taining diversity. One example for proportional selection is to tune the selective pressure
adaptively by a nonlinear scaling of the fitness function (Menczer and Parisi, 1992).

The most notable selection variations explicitly aimed at niching are crowding (De Jong,
1975; Mahfoud, 1992) and fitness sharing (Goldberg and Richardson, 1987; Horn, 1993;
Mahfoud, 1993). In both of these methods, selection is somehow altered to take into
account some measure of similarity among individuals. Shortcomings of both methods,
as well as of other multiobjective EAs, are inefficiency and problem-dependency. If � is
the population size, selection has best-case time complexity ��� ��� rather than ����� � per
individual (Van Veldhuizen, 1999). Such a slowdown may be important for practical cases
with large populations. Additionally, for parallel implementations, the computation of
similarity may impose a large communication overhead. Moreover, it is estimated that the
population size required to maintain the population across niches grows superlinearly with
the number of niches � (with a large constant) (Mahfoud, 1994). However, to allocate
such a population is impossible because � is unknown, unless we have prior knowledge
of the problem. The role of selection for multicriterion and parallel optimization remains
an active area of research in the Evolutionary Computation community (Harik, 1995;
Mahfoud, 1995; Horn, 1997).

This paper describes ELSA (Evolutionary Local Selection Algorithm), an agent-based
EA that lends itself naturally to multiobjective and cover optimization applications. The
algorithm is illustrated in the next section, and its main distinctions from other evolutionary
algorithms are outlined. In the following section, we report on experiments in which ELSA
is compared with other EAs in three broad classes of computational tasks. Finally, we
discuss the results of these experiments and address the advantages, limitations, and possible
applications of local selection.

2 Local Selection Algorithms

We now introduce a local selection scheme that was originally motivated by artificial life
models of adaptive agents in ecological environments (Menczer and Belew, 1996a, 1996b).
Modeling reproduction in evolving populations of realistic organisms requires that selection,
like any other agent process, be locally mediated by the environment in which the agents are
situated. An agent’s fitness must result from individual interactions with the environment,
which contains other agents as well as finite shared resources, such as food.

2.1 ELSA

To characterize local selection and succinctly describe its differences from global schemes,
let us cast the EA into an agent-based framework. Figure 1 outlines the ELSA at a high
level of abstraction.

Each agent (candidate solution) in the population is first initialized with some random
solution and an initial reservoir of energy. If the algorithm is implemented sequentially
rather than in parallel, the main loop calls agents in random order to prevent spurious
sampling effects.

Evolutionary Computation Volume 8, Number 2 225



F. Menczer, M. Degeratu, and W. Street

�����������
	��������������	
�������������
�������������
����� �������������!���"$#�%�&
while

������!��'�!����
	���(��$�����������
for each

����������))+*-,/.10�23)�234�5768:9�;<4�57)>=?=
for each

�����!��
"$������!����$@ACB ,EDGF HI57JLKM2?;<4
N�N�57)�*�O�@+=O BQPR3S�T
U =BQPR3S�T
U , BVPR�S>T
UXW ACBBZY , BZY\[]ACB
endforB Y , B Y W B_^�`a U
if b BZY�c #�d�����
�!
� )�*��������������
��	
����
���B Y * , BZY %�&BZY , BZY W B Y *
else if b B Yfehg d!���i���(���)j��!���i'�����
��	
�����
���
endif

endfor!�����	������
��� B R�S>T
U
endwhile

Figure 1: ELSA pseudocode.

In each iteration of the algorithm, an agent explores a candidate solution similar to
itself. k The agent collects lnm from the environment and is taxed with m 6�9�N�2 for this action.
The net energy intake of an agent is determined by its fitness. This is a function of how well
the agent performs with respect to the (possibly many) criteria being optimized. The energy
also depends on the state of the environment. For example, in the experiments illustrated
in this paper, the environment corresponds to the set of possible values for each of the
criteria being optimized.

&
We imagine an energy source for each criterion, divided into

bins corresponding to its values. So, for criterion o @ and value p , the environment keeps
track of the energy m @4�;rq�2 ��p � corresponding to the value o @�s p . Further, the environment
keeps a count of the number of agents t @ �3p � having o @ s p . The energy corresponding to
an action (alternative solution) u for criterion o @ is given by

o�vw�x\y{z|z ��u_}�~ � s o @ ��u �
t @ ��o @ ��u ��� (1)

This is equivalent to crowding and is illustrated in Figure 2. As the various examples
show, actions result in energetic benefits only inasmuch as the environment has sufficient
energetic resources; if these are depleted, no benefits are available until the environmental
resources are replenished. Thus, an agent is rewarded with energy for its high fitness values
but also has an interest in finding unpopulated niches in objective space, where more energy
is available. Diversity among the solutions considered by the population ensues as a result.

In the selection part of the algorithm, an agent compares its current energy level with
a threshold � . If its energy is higher than � , the agent reproduces. The mutated clone that
was just evaluated becomes part of the population, with half of its parent’s energy. When an
agent runs out of energy, it is killed. The conservation of energy at reproduction effectively
removes from the algorithm the degree of freedom corresponding to the � parameter. The
population size is independent of the reproduction threshold; � only affects the energy
stored by the population at steady state. Equation 3 illustrates how the population size can
be regulated irrespective of � .
�
The mutation neighborhood of a solution is, of course, dependent on the representation used in any given

problem.�
If a criterion takes continuous values, the values can be discretized.
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Figure 2: Transformation of fitness into energy for some criterion ~ and action u such that
o s o @ ��u � and m s m @4�;rq�2 . On the left, there is enough energy in the environment for the
one agent with this fitness value. In the middle, the energy is sufficient, but there are two
agents who must share it. On the right, the energy is not sufficient, and the agent takes
whatever is there.

The environment acts as a data structure that keeps track of the net effects of the rest of
the population. This way, direct communications between individuals (such as comparisons,
ranking, or averaging of fitness values) become unnecessary, and the only interactions consist
of the indirect competition for the finite environmental resources. In a nondistributed or
single-criterion task, the environment may reduce to a single global process with the trivial
role of ensuring balanced allocation of computational resources to the individuals.

In the experiments illustrated in this paper, m 6�9�N2 for any action is a constant unless
otherwise stated. Figure 3 shows how the environment is replenished at each time step. The
quantity m � K ; is also, typically, a constant. The idea is to fill each bin up to m � K ; , starting
with the bins with highest criteria values, until we run out of replenishment energy.

�
is

the total number of values taken by all criteria, or bins into which the values of continuous
criteria are discretized. Thus, the total amount of replenishment energy, typically, depends
on the size of the problem.

On the other hand, if we want to maintain the population average around some fixed
value � g irrespective of problem size, we can let

m � K ; s � g�� m 6�9�N2�� � (2)

In fact, since energy is conserved, the average amount of energy that leaves the system per
unit time (through costs) has to be less than or equal to the amount of energy that enters
the system per unit time (through replenishment):

� � m 6�9�N2��	� m�
 4�>8:4
;rK N�� (3)� � � m 6�9�N2	� � m � KM;� � �	� � m � KM; � m 6�9�N2
� � g

where
� � � indicates time average.

In an implementation based on the pseudocode of Figure 1, some other details would
need to be filled in. For example, if crossover is to be used, a candidate solution can be
recombined with another member of the population before being evaluated or inserted into
the population in case the parent is selected for reproduction. The same applies for any
other genetic operators or problem-specific local search steps warranted by the task at hand.
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Figure 3: Pseudocode for energy replenishment in ELSA.

Recombination is not used with ELSA in any of the experiments in this paper. The only
genetic operator used is mutation, and the details are illustrated for each problem.

2.2 Local versus Global Selection

Selection is the central point where this algorithm differs from most other evolutionary
algorithms. Here, an agent may die, reproduce, or neither (corresponding to the solution
being eliminated from the pool, selected, or maintained). Energy is always conserved.
The selection threshold � is a constant, independent of the rest of the population—hence,
selection is local. This fact reduces communication among agent processes to a minimum
and has several important consequences.

First, two agents compete for shared resources only if they are situated in the same
portion of the environment. It is the environment that drives this competition and the
consequent selective pressure. No centralized decision must be made about how long an
agent should live, how frequently it should reproduce, or when it should die. The search is
biased directly by the environment.

Second, LS is an implicitly niched scheme because of the sharing of energetic resources
associated with the objectives. Therefore, population diversity is naturally maintained. This
makes the search algorithm more amenable to cover optimization than to standard conver-
gence criteria. The bias is to exploit all resources in the environment, rather than to locate
the single best resource. This is particularly appropriate in multicriterion optimization
applications.

Third, the size of the population, rather than being determined a priori, emerges from
the carrying capacity of the environment. This is determined by 1) the costs incurred by
any action and 2) the replenishment of resources. Both of these factors are independent of
the population. This means that the larger the problem search space, the larger

�
, and the

more energy injected into the environment during replenishment, yielding larger carrying
capacity and larger average population size. The population size need not be adjusted
depending on the problem size.

Finally, the removal of selection’s centralized bottleneck makes the algorithm paral-
lelizable and, therefore, amenable to distributed implementations. ELSA is, therefore, an
ideal candidate to study the potential speedup achievable by running agents on multiple
remote hosts.

Local selection has disadvantages and limitations as well. Imagine a population of
agents who can execute code on remote servers in a distributed environment but have to
look up data on a central machine for every action they perform. A typical example of
such a situation would be a distributed information retrieval task in which agents share a
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Table 1: Schematic comparison between general global and local selection schemes.

Feature Global Selection Local Selection
reproduction threshold

��������� �
	������	 ��������� �������������
conserved quantity selective pressure entropy

search bias exploitation exploration
adaptive landscape single-criterion multicriterion
convergence goal single-point cover

biological equivalent r-selection K-selection

centralized page cache. Because of communication overhead and synchronization issues,
the parallel speedup achievable in this case would be seriously hindered. As this scenario
indicates, the feasibility of distributed implementations of evolutionary algorithms based on
local selection requires that the environment can be used as a data structure. Like natural
organisms, agents must be able to “mark” the environment so that local interactions can
take advantage of previous experience.

Local selection algorithms cannot immediately be applied to any arbitrary problem.
First, a problem space may not lend itself to being used as a data structure. For exam-
ple, marking the environment in continuous function optimization with arbitrary precision
might hinder discretization and, thus, compromise the feasibility of local data structures.
Second, it may be difficult to devise an isomorphism of the problem such that the envi-
ronmental resource model could be applied successfully. For example, associating environ-
mental resources to partial solutions of a combinatorial optimization problem may require
a decomposition property that the problem is not known to possess. One of the goals of
the experiments in this paper is to understand how important these limitations may be.

In a multicriterion or distributed task, the environment models the problem space and
the resources that are locally available to individual solutions. It is in such cases that the
distinction between local and global interactions among individuals becomes important;
the selection mechanism and environmental resource model capture the nature of such
interactions. In a standard EA, an individual is selected for reproduction based on how
its fitness compares with the rest of the population. For example, proportional selection
can be modeled by a selection threshold

� m � , where
� � � indicates population average for

both reproduction (in place of � ) and death (in place of 0). Likewise, binary tournament
selection can be modeled by a selection threshold m 
 , where the subscript � indicates a
randomly picked individual. In local selection schemes, � is independent of the rest of
the population, and the computations that determine whether an individual should die
or reproduce can be carried out without any direct comparisons with other individuals.
Table 1 illustrates, schematically, the main features that differentiate the two general classes
of selection schemes.

3 Experiments

In this section, we will compare the performance of ELSA with other evolutionary algo-
rithms on three problems. The first problem is related to searching the Web and requires
cover optimization in a multimodal environment. The second task is an easy multicriterion
problem, useful for comparison because the Pareto front is known a priori. The third test
is a multicriterion machine learning problem with real-world data.
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3.1 Graph Search

Retrieving relevant information in a hypertext environment is an application that would
clearly benefit from evolutionary algorithms achieving cover optimization. Distributed
information retrieval is a lively area of research due to the popularity of the Web and the
scalability limitations of search engine technology (Menczer and Monge, 1999; Menczer
and Belew, 2000). In previous work, we tested the feasibility of local selection algorithms for
distributed information retrieval problems by building artificial graphs to model different
aspects of Web-like search environments (Menczer and Belew, 1998; Menczer, 1998).
Here, we outline the results of a related experiment engineered to model a multiobjective
environment.

3.1.1 Problem Description

The problem can be broadly described as searching large graphs in sublinear time. Imagine
a very large graph, where each node is associated with a Boolean payoff. The population
of agents visits the graph as agents traverse its edges. The idea is to maximize collective
payoff while visiting some fraction of the nodes in the graph. Since the modeled search
graph is typically distributed across remote servers, agents are charged costs for using its
resources—traversing edges and evaluating each node’s payoff. Nodes, edges, and payoff
model, respectively, hypertext documents, hyperlinks, and relevance.

The graph search task is general enough that it can also be applied to model several
other interesting problems. Another example would use the graph as a model of a 2-
dimensional environment in which agents have to sense their position and move to reach
some goal. This would be a typical task for a situated robot. A third example would
be to reduce the graph to model any of the environments used in reinforcement learning
problems.

In our instance of the graph search task,
�

nodes are divided among � clusters. Each
node is relevant with probability � . Given two nodes v and � , there is a link �3v�}�� � with
probability � if v and � are in different clusters and with probability ��� ( ��� � ) if they are
in the same cluster.

The goal is to evolve agents whose genotypes correctly identify their clusters, enabling
them to follow the best links and, thus, achieve maximum payoff intake. If the cluster
number is correct, the agent has access to the payoff of the nodes pointed by the outlinks
in the current node and picks a link going to a relevant node. Otherwise, the agent follows
a random link.

This task can be seen as multiobjective in the sense that different agents must have
different genotypes (depending on where they are situated) in order to collect payoff scat-
tered across different clusters of nodes. There is no single optimal solution—each solution’s
optimality depends on the current cluster.

3.1.2 Algorithmic Details

In the ELSA implementation for this problem, each agent’s genotype comprises a binary
string of length 	�
� & � , representing the agent’s assessment of the cluster in which the agent
is currently situated. At reproduction, one of the genotype bits is flipped.
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Figure 4: Performance of ELSA and tournament selection on graph search problems with
various values of � . In this and the following plots, error bars indicate standard errors
across multiple runs of the same algorithm with the same parameters but different initial
random conditions (20 runs in this case).

The energetic benefit of an action is the payoff of the newly visited node, provided it
had not been previously visited by any agent. Nodes are therefore “marked” to keep track
of used resources. We aim at cover optimization, because we want the agents to locate as
many relevant nodes as possible. To this end, the environment is not replenished for this
task ( m � K ; s � ); a node yields energy only once. A constant energy cost is charged for any
(new or marked) node visited.

3.1.3 Results

To gauge the performance of ELSA in this graph search problem, we compare local selec-
tion with an EA employing global selection. Binary tournament selection is chosen as a
representative of global selection schemes mainly because it does not require global oper-
ations, such as averaging, and, thus, it fits naturally within the steady-state framework of
ELSA. Basically, the same algorithm outlined above is used for tournament selection, with
the difference that the energy level of a randomly chosen member of the population is used
in place of both � for reproduction and 0 for death (cf. Figure 1).

We ran sets of experiments on many random graphs with different parameters. Here,
we report the case of

� s ��� ��� nodes, � s ��� � , � s�� � �	� �
� �����
, � s� , and various

numbers of clusters. The populations were initialized with 100 agents and stopped at
extinction or after

�
edges had been traversed. Recall (the fraction of relevant nodes found

by the population) up to that point was recorded. ELSA used parameters � s � and
m 6�9�N2hs ��� � , so that an agent could make 10 bad choices for each relevant node found.
As Figure 4 illustrates, increasing � makes the problem multiobjective, and, therefore,
we observe a degradation in performance. ELSA displays a significant advantage over
tournament selection, across the observed range of � . These results generalize to a wide
range of graph parameterizations.
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Figure 5: Population dynamics of single runs on graph search problems with � s �
clusters.

To illustrate the effect of local selection on selective pressure, Figure 5 plots the size
of the population over time in two single runs of ELSA and tournament selection. The
local selection population survives longer and continues to discover relevant nodes, because
agents in different locations do not compete with each other. As stated in Section 2.2,
such population dynamics stems from the carrying capacity of the environment, rather than
being manually determined. On the other hand, the additional pressure of tournament
selection leads the population to premature convergence and extinction.

3.2 Ones and Pairs

The success of ELSA in the graph search problem led us to test the approach on other,
better-known problems, for which we could obtain a more fair comparison with other
evolutionary algorithms developed specifically for Pareto optimization. We wanted to
pick both a problem and a set of alternative approaches well described in the literature.
We first focused on a simple test problem called “unitation versus pairs” (Horn et al.,
1994) and on two well-known evolutionary algorithms for multicriterion optimization:
the Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1984, 1985) and the Niched
Pareto Genetic Algorithm (NPGA) (Horn et al., 1994; Horn, 1997). Here we report on
new experiments comparing ELSA with VEGA and NPGA on the unitation versus pairs
task.

3.2.1 Problem Description

The problem is very simple. Consider the combinatorial search space of size
�

binary
strings ��� s ��� g } � ��� }���� W k �	� � K�
 � � } ���� . Two criteria are defined:

� x\y{z ��� � s
� W k�
K�� g � K (4)
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t]u v �rz ��� � s
� W k�
K�� g ���

K � � 57K [ k = D���� �
� (5)

Clearly, the two criteria cannot both be completely satisfied, as maximizing the number of
ones in a string will minimize the number of � � �-} � � � pairs, and maximizing the number of
pairs will halve the number of ones. Therefore, this is an example of a Pareto optimization
problem.

We can now give a more formal definition of the Pareto front. The criteria define a
partial order among solutions. The evaluation vector of one solution z k is said to dominate
that of another solution z & if �\~�� o @ �z k �	� o @ ��z & � and 
 ~�� o @ ��z k � � o @ ��z & � , where o @ is
the ~ -th criterion. Neither dominates the other if 
 ~L}���<o @ �z k � �/o @ �z & � }�o 8 ��z & � �/o 8 ��z k � .
The Pareto optimal set is defined as the set of solutions whose evaluation vectors are
nondominated, and such nondominated vectors in criteria space make up the Pareto front.

The main advantage of simple problems such as unitation versus pairs is that the Pareto
front is known—it can be determined numerically or by induction. Therefore, algorithms
can be tested conveniently, and one can even assess what fraction, if any, of the Pareto front
is covered by a population.

3.2.2 Algorithmic Details

The application of ELSA to this problem is a straightforward implementation of the algo-
rithm in Figure 1 and Equation 1, with the functions � x\y{z � � � and t]u v��{z � � � as the criteria.
Bins are created in correspondence to each of the possible values of the criteria. Replen-
ishment takes place as shown in Figure 3, with m � K ; determined according to Equation 2 in
order to maintain an average population size equal to that used in the other EAs described
below. The values of the various algorithm parameters are shown in Table 2. A mutation,
again, corresponds to flipping a single bit.

Table 2: Parameter values used with ELSA in the unitation versus pairs problem.

Parameter Value��� ����
4.0�
2.0��� 300� � ��������

�! �#"%$ �'& �'(�� ���
1

The first multicriterion EA alternative that we consider is VEGA. In VEGA, the
population is divided into subpopulations, one associated with each of the criteria. In
each subpopulation, the corresponding criterion is used as the fitness function. VEGA
was used early on with some success in Pareto optimization and became well-known as a
multicriterion EA. However, VEGA is rather dated, and it tends to favor extreme points
of the Pareto front over intermediate, trade-off points (Goldberg, 1989). Nevertheless,
we use VEGA in our comparison due to its historical value and because it can be used
in conjunction with any selection scheme. Here, we use binary tournament selection in
conjunction with fitness sharing, since this combination has been shown to improve VEGA’s
coverage of the Pareto front (Horn et al., 1994).
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Table 3: Parameter values used with NPGA and VEGA in the unitation versus pairs
problem.

Parameter Value� ��������� 4.0�
	 ���
16� 300�� � ������
������� �
0.9�� �#" $ �'& �'(�� ���
0.01

The second multicriterion EA alternative that we consider is the more recent NPGA.
In NPGA, Pareto domination tournament selection is used in conjunction with fitness
sharing. Pareto domination tournaments are binary tournaments in which the domination
of each candidate is assessed with respect to a randomly chosen sample of the population. If a
candidate dominates the whole sample and the other candidate does not, then the dominant
candidate wins the tournament. If both or neither candidate dominates the whole sample,
then the tournament is won by the candidate with the lower niche count. The size of the
sample w�� 9�. is used to regulate the selective pressure. NPGA has proven very successful in
Pareto optimization over a range of problems.

The various parameters used here for VEGA and NPGA are taken, in part, from Horn
et al. (1994) and verified by reproducing their results in the unitation versus pairs problem.
They are shown in Table 3.

3.2.3 Results

The concept of a generation is meaningless in ELSA, because the population fluctuates.
Even if we define a generation as a unit of time in which each candidate solution is evaluated
once (the loop over the agents in Figure 1), the time complexities of the basic steps of
the three algorithms are very different from one another. To insure a fair comparison, we
count basic “operations” uniformly across the three algorithms. A basic operation is any
comparison that has to do with the execution of the algorithm. These include both fitness
evaluations and algorithmic steps, so that the operation count is incremented inside every
loop that is required by the algorithm. The operation count is, therefore, a measure of time
complexity.

�

The first experiment simply compares the performance of the three algorithms by
measuring the cover of the Pareto front achieved over time. The size of the problem in
this experiment is

� s �  bits. Figure 6 shows the results. ELSA is the clear winner.
NPGA also achieves almost complete coverage, but it takes longer because the algorithm
has a higher time complexity. Every time a candidate solution is evaluated, many operations
must be carried out to compute Pareto domination and fitness sharing. VEGA appears to
converge on a subset of the Pareto front.

The second experiment aims at evaluating the scalability of the two more competitive
algorithms with respect to problem size. To this end, we drop VEGA and test ELSA and
two versions of NPGA on problems of different sizes between

� s � � and �  � bits. The
reason for the two versions of NPGA is in the fact that, like the majority of EAs, NPGA

�
This is more accurate than counting fitness function evaluations in this problem, because the time complexity

of computing fitness does not make all the other algorithm operations negligible.
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Figure 6: Coverage of the Pareto front for the unitation and pairs problem plotted for the
three evolutionary algorithms versus time complexity.

has a fixed population size. How does one determine the right population size for a given
problem? Such problem dependence is an issue for EAs in general. For large problems, the
Pareto front is large, and, therefore, a large population is necessary. Conversely, a smaller
population should be sufficient for small problems. The problem dependence of population
size is of consequence for the scalability of the algorithm. If we don’t increase population
size with problem size, Pareto cover performance will suffer. So, in one NPGA version,
we keep the population size constant (100), and in another we make it proportional to the
problem size (

� �
). �

By using the replenishment scheme of Figure 3 and letting m � KM; be proportional to
m 6�9�N2 ( m � K ; s � m 6�9�N2 in these runs), ELSA does not have a problem dependence issue. In
fact, the average population size is determined by the carrying capacity of the environment,
which is automatically proportional to problem size. The user does not need to make a
decision based on knowledge of the problem. Apart from these differences in population
size, both ELSA and NPGA use the parameter values shown in Tables 2 and 3, respectively.

For each problem size, Figure 7 plots the coverage of the Pareto front achieved by the
different algorithms after a fixed time (one million operations). Unsurprisingly, the NPGA
version with proportional population does better than the version with fixed population
on large problems (where the fixed population is too small) and worse on small problems
(where the fixed population is larger). Once again, ELSA is the winner. Not only does
its population adjust automatically to problem size, but it also outperforms both versions
of NPGA where the differences are significant. As

�
grows, the differences becomes less

significant, and, ultimately, all of the algorithms fail to find any point in the Pareto front in
the given time.

�
We use the knowledge that the size of the Pareto front is also proportional to � for this problem.
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Figure 7: Coverage of the Pareto front for the unitation and pairs problem achieved after
a fixed number of operations, plotted for the two evolutionary algorithms versus problem
size.

3.3 Feature Selection in Inductive Learning

Unitation versus pairs has allowed us to quantitatively compare the performance of ELSA
and other multicriterion EAs on a well defined problem with known Pareto front. We now
turn to a more realistic problem, where the Pareto front is unknown.

3.3.1 Problem Description

In these experiments, we consider the problem of feature subset selection in inductive or
similarity-based machine learning. Given two disjoint sets

�
and � of feature vectors in

some ~ -dimensional space, the problem is to construct a separating surface that allows future
examples to be correctly classified as members of either

�
or � . Popular techniques for this

task include decision trees, artificial neural networks, and nearest neighbor methods. In
this work, the learned separation model is a simple ~ -dimensional hyperplane, comparable
to a perceptron.

In order to construct classifiers that generalize well to unseen points, it is important to
control the complexity of the model. In many domains, biasing the learning system toward
simpler models results in better accuracy, as well as more interpretable models. One way to
control complexity is through the selection of an appropriate subset of the predictive features
for model building. There is a trade-off between training accuracy and model complexity
(number of features); it is difficult to determine, for a given problem, the relative importance
of these two competing objectives. The combinatorial feature selection problem has been
studied extensively in the machine learning literature, with approximate solutions being
found using both filter and wrapper models (John et al., 1994; Kira and Rendell, 1992) and
exact solutions found using integer programming (Narendra and Fukunaga, 1977). Further,
iterative selection of feature subsets is fundamental to traditional predictive techniques such
as regression and decision tree construction.
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The problem of optimally (in a least-norm error sense) separating two point sets
can be solved using linear programming. We describe here the Robust Linear Program
(RLP) (Bennett and Mangasarian, 1992; Mangasarian, 1993) used in this application. The
available training points from

�
and � can be represented as matrices

�
and � , with each

row of
�

(respectively � ) containing the feature values for one training example from set�
( � ). The goal is to construct a separating plane ����� s�� in the feature space of these

examples such that all the points of
�

lie on one side of the plane (say,
� � � y � , where

y is a vector of ones of appropriate dimension) and all the points of � lie on the other
( ���
	 y � ). This will only be possible if

�
and � are linearly separable, which, in general,

is not the case. We, therefore, choose to minimize the average distance between the plane
and the misclassified points. This is achieved with the following normalized minimization
problem:

�������������� O �
�
x��

� ��� � ��� y � � � � ��� [ � k �
�
x 

� ������� y � � � � � � [ � k (6)

where x � ( x  ) is the number of rows of
�

( � ),
�� !�
k denotes the 1-norm of

 
and �  � [

denotes ���  � [ � K s�" u � �  K } � �-}�v s �<} ��� � } " , for
 
 �

.
.

This objective can be shown to be equivalent to the following linear program:

����#��������� O � O $|O %
4&$;(' � 4&%;*)

subject to

� �+� y � �-, � y
����� y � �  � y

,Z}  � � (7)

This linear program has a number of favorable properties, including:

. If
�

and � are linearly separable, a separating plane is found.

. The null solution � s � } � s � is never unique and is only obtained when the centroids
of the two point sets are equal.

. Use of the 1-norm error, rather than the more traditional 2-norm error, makes Pro-
gram 7 more resistant to the effects of outliers.

Mathematical programming models have also been used to solve the feature selec-
tion problem by incorporating feature minimization directly into the objective. In Bradley
et al. (1998), the RLP formulation was augmented with a term that penalizes the num-
ber of nonzero coefficient values. The resulting concave optimization problem was solved
efficiently using a series of linear programs, resulting in significant generalization improve-
ments on high-dimensional problems. One of the problem domains explored in that paper
is also used in our experiments: the prediction of breast cancer recurrence based on cyto-
logical features (Mangasarian et al., 1995; Street, 1998). A version of this data set is available
at the UCI Machine Learning Repository (Merz and Murphy, 1996).

3.3.2 Algorithmic Details

In this application, the EA individuals are bit strings with length equal to the dimensionality
of the feature space. Each bit is set to 1 if the feature is to be used in training and 0 otherwise.
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Table 4: Parameter values used with ELSA in the feature selection problem.

Parameter Value��� ����
0.6�
0.3��� 300� ��� � �
� � � ���

�! �#"%$ �'& �'(�� ���
1

Table 5: Parameter values used with NPGA in the feature selection problem.

Parameter Value� ��������� 14.0�
	 ���
16� 100�� � ������
������� �
0.0�� �#" $ �'& �'(�� ���
0.5

We thus measure the complexity of the classifier as simply the number of features being
used. Accuracy is measured using the training correctness of the resulting classifier. While
this is not a reliable estimate of generalization ability, it does allow an exploration of the
accuracy vs. complexity trade-off. Our criteria to be maximized are, therefore,

o 6�9�. �>8:4���KM2 $ ��z � s � � � x\y{z ��z ��
o )>6�60 
 )+6�$ ��z � s prediction training accuracy using feature vector z

The application of ELSA to this problem is a straightforward implementation of the
algorithm in Figure 1 and Equation 1, with the functions o )+6�60 
 )>6�$ � � � and o 6�9�. �>8:4��IK:2 $ � � �
as the criteria. Bins are created in correspondence to each of the possible values of the
criteria. While o 6�9�. �>8:4���KM2 $ has

� � � discrete values (between 0 and 1), o )+6�60 
 )+6�$ takes
continuous values and, thus, must be discretized into bins. We use 100 bins for the accuracy
criterion. The values of the various algorithm parameters are shown in Table 4. Some of the
parameters are previously tuned. As in the preceding experiments, mutation corresponds to
flipping a single bit. Replenishment takes place as shown in Figure 3, with m � K ; determined
according to Equation 2 in order to maintain an average population size equal to that used
in NPGA.

�

For this problem, we again compare ELSA with NPGA, since VEGA has proven a
less competitive algorithm. The various parameters used for NPGA are shown in Table 5.
Note that crossover is not used in NPGA because for this problem we don’t expect any
correlation across features. The higher mutation rate, as well as the other parameter values
used with NPGA, are the result of preliminary parameter tuning.

The data set used in these experiments has
� s ���

features so that the candidate
solutions in ELSA and NPGA have 33 bits.

�
In this experiment, only about one third of the available energy is used by the ELSA population so that the

actual population size oscillates around � �
	������� (cf. Equation 3).
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3.3.3 Results

In the feature subset selection problem, the evaluations of the criteria appear as black boxes
to the evolutionary algorithms. In fact, the accuracy computation is very expensive and
completely dominates the time complexities of the algorithms.

�
Given this observation, it

was decided for fairness that in the feature subset selection experiments, the only operations
that should contribute to the measured time complexities of the algorithms are the accuracy
criterion computations. Therefore, time is measured in number of o )+6�60 
 )>6�$ evaluations,
and all other algorithmic costs are assumed to be negligible. This kind of assumption is,
generally, realistic for real-world multicriterion applications.

We ran the two EAs for 100,000 function evaluations. Each run took approximately
3 hours on a dedicated 400 MHz P2 Linux workstation. Figure 8 pictures the population
dynamics of the algorithms in Pareto phase-space, i.e., the space where the criteria values are
used as coordinates. The Pareto front is unknown, so we can only observe the populations
and qualitatively assess their progress relative to one another. Since we want to maximize
accuracy and minimize complexity, we know that a solution represented as a point in Pareto
phase-space is dominated by solutions above it (more accurate) or to its right-hand side (less
complex).

The general conclusion drawn from Figure 8 is that ELSA tends to cover a wider
range of trade-off solutions, while NPGA focuses on a smaller range but gets closer to the
Pareto front in that range thanks to its stronger selection pressure. These behaviors are not
entirely surprising given the analysis of Section 2.2. If closeness to the actual Pareto front
is more important than coverage, then NPGA remains a very strong competitor.

On the other hand, ELSA is able to cover almost the entire range of feature vector
complexities. One coverage metric that could be used to quantitatively compare the cover-
age obtained by the two algorithms is the area of the union of rectangles between the origin
and the solution points in Pareto space (Zitzler and Thiele, 1998). However, this metric
is deceptive for nonconvex fronts such as the ones in Figure 8. A more appropriate metric
for this problem is the integral of population accuracy over complexity in Pareto space. By
keeping track of the solutions with best accuracy for any given complexity, we can define
the cumulative area covered by the population of algorithm

�
up to time � as follows:

��� ��� � s k�
6 � g

���
	N�������G5 23=�� 2�� ���
��o )>6�60 
 )+6�$ ��z �	� o 6�9�. �>8:4��IKM2 $ ��z � s�� � (8)

where t � ��w � is the population of algorithm
�

at time w . � Figure 9 plots the areas
� B���� � and� � � � � versus time. These measures highlight the superior coverage achieved by ELSA.

Consequently, by looking at the extremities of the population front, we can use ELSA to
easily answer questions like: What features are the best and worst single predictors, or what
is the maximum complexity of the feature subsets that we should consider, beyond which
no increase in accuracy is expected? To quickly achieve such coverage of the Pareto space
is an important property for a multicriterion optimization algorithm.

!
The complexity computation only takes time "$# �&% .'
Note that the summation variable ( does, in fact, take discrete values corresponding to ) � ��� �+* ��,.- �0/ .
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Figure 8: Snapshots of the ELSA and NPGA populations in Pareto phase-space after 3, 10,
30, and 99 thousand function evaluations.
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Figure 9: Plot of the cumulative area covered in Pareto phase-space by the ELSA and
NPGA populations over time.

4 Discussion

We now discuss the advantages and limitations of the local selection algorithm that we have
observed based on the results described in the previous section.

4.1 Performance

Addressing the performance of selection strategies is equivalent to discussing the tension
between exploration and exploitation. A balance between these two opposite forces is clearly
necessary, even in single-criterion EAs, so that the population can make progress toward
good solutions without prematurely converging to suboptimal ones. All multicriterion
optimization EAs enforce diversity by constraining exploitation to keep the population from
converging at all. The different techniques to achieve this goal result in different algorithmic
behaviors, which are naturally problem dependent. In this paper, we intend to discuss local
selection rather than compare and critique different evolutionary approaches to Pareto
optimization. Excellent reviews of multiobjective EAs can be found elsewhere (Fonseca and
Fleming, 1995; Horn, 1997; Van Veldhuizen, 1999).

LS is a weak selection scheme, so it ensures better performance in tasks where the
maintenance of diversity within the population is more important than a speedy convergence
to the optimum. We have shown that ELSA is well-suited to multicriterion optimization
and sublinear graph search applications. In fact, the population quickly distributes itself
across the whole ranges taken by the criteria. For easy problems, such as unitation versus
pairs, ELSA outperforms other effective multicriterion EAs such as NPGA at locating the
entire Pareto front.

On the other hand, the exploitation of information is also necessary to cut the search
space and make progress. For problems requiring effective selection pressure, local selection
may be too weak, as we have shown in the case of the feature subset selection problem.
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We have also applied ELSA to NP-complete combinatorial optimization problems, such as
SAT and TSP, with little success (Menczer and Belew, 1998). The only selection pressure
that ELSA can apply comes from the sharing of resources. Therefore, the way in which
environmental resources are coupled with the problem space in a particular application
of ELSA is crucial to its success. One limitation of ELSA may be in the fact that the
appropriate mapping of a problem onto an environmental model may be hard to determine.

The observations that NPGA is better at multicriterion optimization in a more focused
area of Pareto space, while ELSA is more efficient in covering the whole Pareto space,
suggest that the two approaches could be combined. Local selection could be used at the
beginning of a run, and once a wide range of trade-off solutions has been located, further
resources can be allocated to domination selection.

4.2 Efficiency

LS algorithms can be used whenever the fitness function is evaluated by an external environ-
ment, in the sense that the environment provides appropriate data structures for maintaining
the shared resources associated with fitness. Consider, for example, evaluating a robot in a
physical environment: the environment itself holds information about its state. The robot
prompts for some of this information through its sensors, and storing such information may
be less efficient than simply prompting for the same information again as needed. It may
be impossible to store all relevant observations about a distributed, dynamic environment.
The environment, therefore, takes the role of a data structure, to be queried inexpensively
for current environmental state.

At a minimum, in order for LS to be feasible, an environment must allow for “marking”
so that resources may be shared and in finite quantities. In the graph search problem, visited
nodes are marked so that the same node does not yield payoff multiple times.

�

If marking
is allowed and performed in constant time, the time complexity of LS is also ����� � per
individual. This is a big win over fitness sharing and Pareto domination tournaments,
the best alternative schemes for distributed or multicriterion optimization. The efficiency
advantage of ELSA contributes to its success over NPGA and VEGA in the unitation versus
pairs problem. Further, in a distributed implementation, there is little communication
overhead, and, thus, the parallel speedup can be significant.

4.3 Scalability

In the graph search problem, we have shown that ELSA responds robustly to increases
in the the number of clusters. As the search space becomes more niched, subpopulations
naturally form to cover the various niches.

The unitation versus pairs experiment with increasing problem size also provides us
with evidence of the scalability properties of local selection. ELSA suffers less than NPGA
from the severe (doubly exponential) growth of the search space.

Another aspect of ELSA’s scalability is the robustness of its population size in the face
of problems of increasing complexity. Unlike other evolutionary algorithms, ELSA does
not require a problem dependent decision by the user regarding an appropriate population
size. These scalability properties seem crucial for EAs, in general.

�

In a distributed information retrieval application, this issue would entail a discussion on distributed caching.
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4.4 Applications

Since one of the major strengths of ELSA is its minimal centralized control and consequent
parallelization potential, distributed and parallel computation tasks seem amenable to the
local selection approach. Examples of such problems that we might attack with ELSA
include distributed scheduling, distributed resource allocation, and constrained search.

Local selection has already been applied to agent-based distributed information re-
trieval, e.g., for autonomous on-line Web browsing. The InfoSpiders project (Menczer,
1997, 1998; Menczer and Belew, 2000) shows promise in taking advantage of several prop-
erties of evolutionary local selection algorithms: 1) coverage, for quickly locating many
relevant documents; 2) distributed nature, to conserve bandwidth by enabling agents to run
on the remote servers where documents reside; and 3) localization, so that each agent may
face an easier learning problem by focusing on a limited set of features (words) that are
locally correlated with relevance.

The application to inductive learning can be extended to perform wrapper-model
feature subset selection. Local selection can be applied, as in the experiments described
in this paper, to identify promising feature subsets of various sizes. The best of these can
then be subjected to a more thorough and costly analysis, such as cross-validation, to obtain
a more reliable estimate of generalization accuracy. This approach would be particularly
attractive in an “any-time learning” context in which little overhead would be required to
maintain a record of the best individual encountered so far. Note also that the measure of
complexity can easily be adapted to other predictive models such as artificial neural networks
or decision trees.

Local selection can also serve as a framework for experiments with ensemble classifiers.
By extending the environmental model to associate resources with features, in addition to
criteria values, we can encourage individual classifiers to specialize in particular regions of
the feature space. The predictions of these “orthogonal” classifiers can then be combined
(say, by voting) to produce a single classification system that is more accurate than any of
the individuals working alone.

Distributed robotics is another application area for which evolutionary local selection
algorithms may prove feasible. For example, populations of robots may be faced with
unknown, heterogeneous environments in which it is important to pay attention to many
sensory cues and maintain a wide range of behaviors to be deployed depending on local
conditions.

4.5 Future Directions

The applications outlined above are attractive directions for future work aimed at further
analysis and testing of evolutionary local selection algorithms. The two multicriterion
problems considered in this paper are insufficient to fully evaluate ELSA. In identifying
new applications, we hope to simplify the way in which problems can be cast into the ELSA
framework, to further characterize the problem domains in which ELSA may be feasible
and successful, and to better assess the performance and efficiency of local selection in
real-world problems.

One aspect of scalability that we have not addressed in this paper but are beginning to
explore is algorithmic behavior with respect to increases in the number of criteria. We are
currently experimenting with unsupervised learning (clustering) similar to the supervised
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learning experiments in Section 3.3. Our present approach uses three objectives: intra-
cluster cohesiveness, inter-cluster separation, and complexity, again measured as the number
of features used in the model. In order to find the most descriptive set of clusters, we are also
varying the number of clusters. Preliminary results on both real and simulated data indicate
that the Pareto front is again well-covered in this higher-dimensional space. Further,
using a second-difference heuristic to choose the “right” individual, the method reliably
removes irrelevant features from artificial data sets in small dimensions. Higher dimensional
problems are currently being explored.

The interactions of local selection with recombination operators, in particular with
local rather than panmictic mating, have not been considered and deserve attention in the
future.

We also intend to study the effect of reinforcement learning within an agent’s lifetime
and its interaction with local and global selection schemes. Some initial experiments suggest
a strong duality between local selection and reinforcement learning, where the two adaptive
mechanisms can be viewed as attempts to internalize environmental cues at multiple spatial
and temporal scales (Menczer, 1998).

4.6 Conclusion

This paper introduced ELSA, an agent-based evolutionary algorithm suitable for multiob-
jective optimization due to its novel local selection scheme informed by ecological modeling.
ELSA maintains diversity in a way similar to, but more efficient than, fitness sharing. We
presented experiments in which ELSA was applied to a multimodal search problem and
two multicriterion optimization problems. ELSA achieved better coverage than other
well-known evolutionary computation approaches, scaled better with problem size, and
was less prone to problem and parameter dependence. These qualities make evolutionary
algorithms employing local selection appropriate for a range of distributed applications.
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