
Topical Crawling for Business Intelligence

Gautam Pant and Filippo Menczer??

Department of Management Sciences
The University of Iowa, Iowa City IA 52242, USA
email: {gautam-pant,filippo-menczer}@uiowa.edu

Abstract. The Web provides us with a vast resource for business in-
telligence. However, the large size of the Web and its dynamic nature
make the task of foraging appropriate information challenging. General-
purpose search engines and business portals may be used to gather some
basic intelligence. Topical crawlers, driven by richer contexts, can then
leverage on the basic intelligence to facilitate in-depth and up-to-date re-
search. In this paper we investigate the use of topical crawlers in creating
a small document collection that helps locate relevant business entities.
The problem of locating business entities is encountered when an organi-
zation looks for competitors, partners or acquisitions. We formalize the
problem, create a test bed, introduce metrics to measure the performance
of crawlers, and compare the results of four different crawlers. Our re-
sults underscore the importance of identifying good hubs and exploiting
link contexts based on tag trees for accelerating the crawl and improving
the overall results.

1 Introduction

A large number of business entities — start-up companies and established cor-
porations — have a Web presence. This makes the Web a lucrative source for
locating business information of interest. A company that is planning to diver-
sify or invest in a start-up would want to locate a number of players in the area
of business. The intelligence gathering process may involve manual efforts using
search engines, business portals or personal contacts. Topical crawlers can help
in extracting a small but focused document collection from the Web that can
then be thoroughly mined for appropriate information using off-the-shelf text
mining, indexing and ranking tools.

Topical crawlers, also called focused crawlers, have been studied extensively
in the past [6, 7, 3, 10, 2]. In our previous evaluation studies of topical crawlers,
we found a similarity based Naive Best-First crawler to be quite effective [11, 12,
18]. However, the Naive Best-First crawler made no use of the inherent structure
available in an HTML document. We also studied algorithms that attempt to
identify the context of a link using a sliding window and a distance measure based
on number of links separating a word from a given link. However, such approaches
?? Current affiliation: School of Informatics and Computer Science Department, Indiana

University. Email: fil@indiana.edu

often performed no better than variants of the Naive Best-First approach [12,
18]. In this paper we consider a crawler that identifies the context of a link using
the HTML page’s tag tree or Document Object Model (DOM) representation.

The problem of locating business entities on the Web maps onto the general
problem of Web resource discovery. However, it has some features that distin-
guish it from the general case. In particular, business communities are highly
competitive. Hence, it is unlikely that a company’s Web page would link to a
Web page of its competitor. A topical crawler that is aware of such domain level
characteristic may utilize it to its advantage.

We evaluate our crawlers over millions of pages across 159 topics. Based on
the number of topics and the number of pages crawled per topic, our evaluations
are the most extensive in the currently available topical crawling literature.

2 The Problem

Searching for URLs of related business entities is a type of business intelligence
problem. The entities could be related through the area of competence, research
thrust, comparable nature (like start-ups) or a combination of such features.
We start by assuming that a short list of URLs of related business entities is
already available. However, the list needs to be further expanded. The short list
may have been generated manually with the help of search engines, business
portals or Web directories. An analyst may face some hurdles in expanding the
list of relevant URLs. Such hurdles could be due to lack of appropriate content in
relevant pages, inadequate user queries, staleness of search engines’ collections,
or bias in search engines’ ranking. Similar problems plague information discovery
using Web directories or portals. The staleness of a search engine’s collection is
highlighted by the dynamic nature of the Web [9]. Cho and Garcia-Molina [4]
have shown, in a study with 720,000 Web pages and spanning over 4 months, that
40% of the pages in the .com domain changed every day. Hence, it is reasonable to
complement traditional techniques with topical crawlers to discover up-to-date
business information.

Since our focus is on studying the effect of different crawling techniques,
we do not investigate the issue of ranking. We believe that ranking is a separate
task best left until a collection has been created. In fact, many different indexing,
ranking or text mining tools may be applied to retrieve information from the
collection. Our goal is to find ways of crawling and building a small but effective
collection for the purpose of finding related business entities. We measure the
quality of the collection at various points during the crawl through precision-like
and recall-like metrics that are described next.

3 The Test Bed

For our test bed, we need a number of topics and corresponding lists of re-
lated business entities. The hierarchical categories of the Open Directory Project

(ODP)1 are used for this purpose. ODP provides us with a categorical collection
of URLs that are manually edited and not biased by commercial considerations.
Hence, we can find categories that list related business entities as judged by hu-
mans. To begin with, we identify categories in the ODP hierarchy that end with
any of the following words: “Companies,” “Consultants,” or “Manufacturers.”
These categories serve as topics for our test bed. We collect only those categories
that have more than 20 unique external URLs and we skip categories that have
“Regional,” “World” and “International” as a top-level or sub-category. After
going through the entire RDF dump of ODP, 159 such categories are found.
Next, we split each category’s external URLs into two disjoint sets — seeds and
targets. The set of seeds is created by picking 10 external URLs at random from
a category. The remaining URLs make up the targets. The seeds are given to the
crawlers as starting links while the targets are used for evaluation. The keywords
that guide the crawlers are created by concatenating all the alphanumeric tokens
in the ODP category name leaving out the most general category (Science, Arts
etc.). We also concatenate the manual descriptions of the seeds and the targets
and create a master description that would serve as another source for evalu-
ations. An example of a topic with corresponding keywords, description, seeds
and targets as extracted from an ODP category is shown in Table 1.

Each crawler is provided with a set of keywords and the corresponding seeds
to start the crawl. A crawler is then allowed to crawl up to 10,000 pages starting
from the seeds. The process is repeated for each of the 159 topics in the test bed.
As a result, we may crawl more than one and a half million pages for one crawler
alone. We use the following precision-like and recall-like measures to understand
the performance of the crawlers:

– Precision@N: We measure the precision for a crawler on topic t after crawl-
ing N pages as:

precision@Nt =
1
N
·

N∑

i=1

sim(dt, pi) (1)

where dt is the description of the topic t, pi is a crawled page, and sim(dt, pi)
is the cosine similarity between the two. The cosine similarity is measured
using a TF-IDF weighting scheme [17]. In particular, the weight of a term k
in a given page p is computed as:

wkp =
(

0.5 +
0.5 · tfkp

maxk′∈Tp tfk′p

)
· ln

(|C∗t |
dfk

)
(2)

where tfkp is the frequency of the term k in page p, Tp is the set of all terms
in page p, C∗t is the set of pages crawled by all the crawlers for topic t at
the end of the crawl, and dfk is the number of pages in C∗t that contain the
term k. After representing a topic description (d) and a crawled page (p)

1 http://dmoz.org

as a vector of term weights (vd and vp respectively), the cosine similarity
between them is computed as:

sim(d, p) =
vd · vp

‖ vd ‖ · ‖ vp ‖ (3)

where vd · vp is the dot (inner) product of the two vectors. Note that the
terms used for cosine similarity, throughout this paper, undergo stemming
(using Porter stemming algorithm [15]) and stoplisting.
For a given N , we can average precision@Nt over all the topics in the test bed
to get the average precision@N . The latter can be plotted as a trajectory
over time, where time is approximated by increasing values of crawled pages
(N).

– Target recall@N: In the absence of a known relevant set, we treat the
recall of the targets as an indirect indicator of actual recall (Figure 1). The
target recall@Nt for a crawler on a topic t can be computed at various points
(N) during the crawl:

target recall@Nt =
| Tt ∩ CN

t |
| Tt | (4)

where Tt is the set of targets for topic t, and CN
t is the set of N crawled

pages. Again, we can average the recall (average target recall@N) at various
values of N over the topics in the test bed.

The above evaluation metrics are a special case of a general evaluation
methodology for topical crawlers [18]. We will perform one-tailed t-tests to un-
derstand, in statistical terms, the benefit of using one crawler over another. The
null hypothesis in all such tests will be that the two crawlers under consideration
perform equally well.

Crawled

Targets

Relevant
R

T

C t

N

T

U

R

Ut

t C t

N

C t

N

t

t

Fig. 1. | Tt ∩ CN
t | / | Tt | as an estimate of | Rt ∩ CN

t | / | Rt |

4 Crawlers

We evaluate the performance of four different crawlers. Before we describe the
crawling algorithms, it is worthwhile to illustrate the general crawling infras-
tructure that all the crawlers use.

Table 1. A sample topic - keywords, description, seeds, targets

keywords description seeds targets

Gambling
Equipment
Manufacturers

Gemaco Cards Manu-
facturer of promotional
and casino playing cards
in poker, bridge ... R.T.
Plastics Supplier of
casino value, roulette,
poker and tournament
chips ...

http://www.gemacocards.com/
http://www.rtplastics.com/
http://www.ally.com/
http://www.amtote.com/
http://www.pokerchips.com/
...

http://www.agtco.com/
http://www.cartamundi.com/
http://www.barcrest.co.uk/
http://www.ilts.com/
http://www.ballygaming.com/
http://www.tcsgroup.com/
http://pidcgroup.com/
...

4.1 Crawling Infrastructure

The crawlers are implemented as multi-threaded objects in Java. Each crawler
has many (possibly hundreds) threads of execution sharing a single synchronized
frontier that lists the unvisited URLs. Each thread of the crawler follows a
crawling loop that involves picking the next URL to crawl from the frontier,
fetching the page corresponding to the URL through HTTP, parsing the retrieved
page, and finally adding the unvisited URLs to the frontier. Before the URLs are
added to the frontier they may be assigned a score that represents the estimated
benefit of visiting the page corresponding to the URL. Some of the crawlers
utilize the tag tree structure of the Web pages. They first tidy2 the HTML page
and then use an XML parser to obtain relevant information from the DOM
structure. Tidying an HTML page includes both insertion of missing tags and
reordering of tags in the page. The process is necessary for mapping the content
of a page onto a tree structure with integrity, where each node has a single
parent. We also enclose all the text tokens within <text>...</text> tags. This
makes sure that all text tokens appear as leaves on the tag tree. While this step
is not necessary for mapping an HTML document to a tree structure, it does
provide some simplifications for the analysis. Figure 2 shows a snippet of an
HTML page that is subsequently cleaned and converted into convenient XML
format before being represented as a tag tree.

The current crawler implementation uses 75 threads of execution and limits
the maximum size of the frontier to 70,000. Only the first 10KB of a Web page are
downloaded. Note that during a crawl of 10,000 pages, a crawler may encounter
more than 70,000 unvisited URLs. However, given that the average number of
outlinks on Web pages is 7 [16], the maximum frontier size is not very restrictive
for a crawl of 10,000 pages. Being a shared resource for all the threads, the
frontier is also responsible for enforcing certain ethics that prevent the threads
from accessing the same server too frequently. In particular, the frontier tries
to enforce the constraint that every batch of D URLs picked from it are from
D different server host names (D = 50). The crawlers also respect the Robot
Exclusion Protocol.3

2 http://www.w3.org/People/Raggett/tidy/
3 http://www.robotstxt.org/wc/norobots.html

<P class=MsoNormal>
About Exelixis
Exelixis, Inc. is a leading genomics-based drug discovery
company focused on product development through its expertise in comparative genomics and model system
genetics. These technologies provide a rapid, efficient and cost effective way to move from DNA sequence
data to knowledge about the function of genes and the proteins they encode. The company’s technology is
broadly applicable to all life sciences industries including pharmaceutical, diagnostic, agricultural
biotechnology and animal health. Exelixis has partnerships with Aventis CropScience S.A., Bayer Corporation,
Bristol-Myers Squibb Company, Elan Pharmaceuticals, Inc., Pharmacia Corporation, Protein Design Labs,
Inc., Scios Inc. and Dow AgroSciences LLC, and is building its internal development program in the area of
oncology. For more information, please visit the
company’s web site at
www.exelixis.com.<o:p></o:p>
</P>

html

p

strong text

text

text a

text

Context

Fig. 2. An HTML snippet (top) whose source (center) is modified into a convenient
XML format (bottom). The tag tree representation of the HTML snippet is shown on
the right.

4.2 Breadth-First Crawler

Breadth-First is a baseline crawler for our experiments. The crawl frontier is a
FIFO queue. Each thread of the crawler picks up the URL at the front of the
queue and adds new unvisited URLs to the back of it. Since the crawler is multi-
threaded, many pages are fetched simultaneously. Hence, it is possible that the
pages are not fetched in an exact FIFO order. In addition the ethics enforced in
the system, that prevent inundating a Web server with requests, also make the
crawler deviate from strict FIFO order. The crawler adds unvisited URLs to the
frontier only when the size of the frontier is less than the maximum allowed.

4.3 Naive Best-First Crawler

The Naive Best-First crawler treats a Web page as a bag of words. It computes
the cosine similarity of the page to the given keywords and uses it as a score
(link scorebfs) of the unvisited URLs on the page. The URLs are then added to
the frontier that is maintained as a priority queue using the scores. Each thread
picks the best URL in the frontier to crawl, and inserts the unvisited URLs at
appropriate positions in the priority queue. The link scorebfs is computed using
Equation 3. However, the keywords replace the topic description, and the vector
representation is based only on term frequencies. A TF-IDF weighting scheme is

problematic during the crawl because there is no a priori knowledge about the
distribution of terms across crawled pages.

As in the case of the Breadth-First crawler, a multi-threaded version of Naive
Best-First crawler with ethical behavior does not crawl in an exact best first or-
der. Due to multiple threads it acts like a Best-N-First crawler where N is related
to the number of simultaneously running threads. Best-N-First is a generalized
version of the Naive Best-First crawler that picks N best URLs to crawl at a
time. We have found certain versions of the Best-N-First crawler to be strong
competitors in our previous evaluations [14, 12, 18]. Note that the Naive Best-
First crawler and the crawlers to follow keep the frontier size within its upper
bound by retaining only the best URLs based on the assigned scores.

4.4 DOM Crawler

Unlike the Naive Best-First crawler, the DOM crawler tries to make use of the
structure that is available in an HTML page through its tag tree representation.
Figure 2 shows the tag tree representation of an HTML snippet. In its general
form, the DOM crawler treats some node that appears on the path from the root
of the tag tree to a link as an aggregation node of the link. All the text in the
sub-tree rooted at the aggregation node is then considered a context of the link.
In the current implementation of the DOM crawler we have set the immediate
parent of a link to be its aggregation node. While the choice of the parent as
the aggregation node may seem arbitrary, we note that it is no more arbitrary
than picking up W words or bytes around a hyperlink and treating them as
the link’s context as has been done before [7, 1]. In an ideal situation we would
like to identify the optimal aggregation node for a given page and topic. This
problem is being studied [13] but it is beyond the scope of this paper. In our
example from Figure 2, all the text (at any depth) under the <p> paragraph
tag forms a context for the link http://www.exelixis.com. After associating
a link with its context, the crawler computes the cosine similarity between the
context and the given keywords. The measure is called the context score. In
addition, the crawler computes the cosine similarity between the page in which
the link was found and the keywords, which corresponds to link scorebfs. The
final link scoredom associated with a link is computed by:

link scoredom = α · link scorebfs + (1− α) · context score

where α weighs the relative importance of the entire page content vs. the context
of a link. It is set to 0.25 to give more importance to the context score. The
frontier is a priority queue based on link scoredom. In practice, due to the
reasons mentioned for the other crawlers, the individual pages are not fetched
in the exact order of priority.

Note that the Naive Best-First crawler can be seen as a special case of the
DOM crawler in which the aggregation node is set to the root of the DOM tree
(the <html> tag), or where α = 1.

4.5 Hub-Seeking Crawler

The Hub-Seeking crawler is an extension of the DOM crawler that tries to explore
potential hubs during its crawl. Since the seed URLs are assumed relevant to the
topic, the crawler determines that a page that links to many of the seed hosts is
a good hub. Seed hosts are fully qualified host names for Web servers, such as
www.igt.com, of the seed URLs. A page points to www.igt.com if it points to
any page from the host. The crawler assigns a hub score to each page based on
the number of seed hosts it points to. It then combines the hub score with the
link scoredom to get a link scorehub for each link on a given page. We would
like hub score to have the following properties:

– It should be a non-negative increasing function for all values of n ≥ 0, where
n is the number of seed hosts.

– It should have extremely small or zero value for n = 0, 1 (to avoid false
positives). The score for n = 2 should be relatively high as compared to
the average link scoredom. The event that a page points to two different
business entities in the same area is relatively unlikely and hence must be
fully exploited.

– The scores must lie between 0 and 1 so that they can be compared against
link scoredom.

While there is an infinite number of functions that satisfy the above properties,
we use the one described in Figure 3.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

hu
b

sc
or

e

n

Fig. 3. Hub scores based on hub score(n) = n·(n−1)

1+n2 , n = 0, 1, 2,

Note that the Equation in Figure 3 relies on the fact that the seed URLs are
relevant. It is ad hoc and lacks the sophistication of methods such as Kleinberg’s
algorithm [8] to identify hubs and authorities. However, it is easy to compute
in real time during the crawl using the link information from a single page. The
link scorehub that is used to prioritize the frontier queue is calculated as:

link scorehub = max(hub score, link scoredom). (5)

5 Performance

Figures 4 (a) & (b) show the performance of all the crawlers described above on
the test bed. We note that on average the Hub-Seeking crawler performs better
than the DOM Crawler which in turn performs better than the Best-First crawler
for most part of the 10,000 page crawls. The baseline Breadth-First crawler
performs the worst as expected. The above observation is true for both of the
performance metrics described in section 3. We note that the performance of the
Hub-Seeking crawler is significantly better than the Naive Best-First crawler
on average target recall@10000 (Figure 4 (b)). In fact a one tailed t-test to
check the same generates a p-value of 0.004. While the Hub-Seeking crawler
outperforms the Best-First crawler even on the average precision@10000 metric
(Figure 4 (a)), a corresponding one tailed t-test gives a p-value of 0.105. Hence,
the benefit is not as significant for precision. However, this means that while
building a collection that is at least as topically focused as the one built by the
Naive Best-First crawler, the Hub-Seeking crawler will harvest a greater number
of the relevant pages of other business entities in the area.

(a) (b)

0.02

0.025

0.03

0.035

0.04

0 2000 4000 6000 8000 10000

av
er

ag
e

pr
ec

is
io

n@
N

N (pages crawled)

Breadth-First
Naive Best-First

DOM
Hub-Seeker

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

av
er

ag
e

ta
rg

et
 r

ec
al

l@
N

 (
%

)

N (pages crawled)

Breadth-First
Naive Best-First

DOM
Hub-Seeker

(c) (d)

0.02

0.025

0.03

0.035

0.04

0 2000 4000 6000 8000 10000

av
er

ag
e

pr
ec

is
io

n@
N

N (pages crawled)

Breadth-First
Naive Best-First

DOM
Hub-Seeker

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

av
er

ag
e

ta
rg

et
 r

ec
al

l@
N

 (
%

)

N (pages crawled)

Breadth-First
Naive Best-First

DOM
Hub-Seeker

Fig. 4. Performance of the crawlers: (a) average precision@N and (b)
average target recall@N using the ODP links as seeds; (c) average precision@N and
(d) average target recall@N using the augmented seeds. The error bars correspond to
±1 standard error.

6 Improving the Seed Set

A search engine can assist a topical crawler by sharing the more global Web
information available to it. We use the Google API4 to automatically find more
effective seeds for the crawler. The Hub-Seeking crawler assumes that a page
that points to many of the seed hosts is a good hub. We use a similar idea to
find good hubs from a search engine in order to better seed the crawl. Using
the Google API, we find the top 10 back-links of all the test bed seeds for a
topic. We then count the number of times a back-link repeats across different
seeds. The count is used as a hub score. The process is repeated for all the
159 topics in the test bed. Only the top 10 back-links in accordance with the
hub score are kept for each topic. If the count for a back-link is less than 2
then the link is filtered out. Also, to make sure that the problem is non-trivial,
we must avoid hubs that are duplicates of the ODP page that lists the seeds
and the targets. For this purpose, we do not include any back-link that is from
the domain dmoz.org or directory.google.com (a popular directory based on
ODP data). Furthermore, to screen unknown ODP mirrors, any back-link page
that has higher than 90% cosine similarity to the the topic description is filtered
out. A back-link page is first projected into the space of terms that appear in the
topic description, and then the cosine similarity is measured in a manner similar
to the Naive Best-First crawler. The projection is necessary to ignore extra text
(in addition to the ODP data) that may have been added by a site. Due to the
filtering criterion and limited results through the Google API, it is possible that
we do not find even a single hub for certain topics. In fact, out of the 159 topics,
we find hubs for only 94 topics. We use the hubs thus obtained along with the
original test bed seeds to form an augmented seed set. The augmented seeds are
used to start the crawl for each of the 94 topics.

Figures 4 (c) & (d) show the performance of the four crawlers using the aug-
mented seed set. We first notice that the order of performance (on both metrics)
among the crawlers remains the same as that for the original seeds. However, the
performance of the DOM crawler in addition to the Hub-Seeking crawler is signif-
icantly better than the Naive Best-First crawler on average target recall@10000
(Figure 4 (d)). One tailed t-tests to verify the same yield p-value of 0.024 for the
DOM crawler and 0.002 for the Hub-Seeking crawler. Another important obser-
vation to make is that all the crawlers better their performance as compared to
the experiments using the original seeds for most part of the 10000 page crawls
(cf. Figure 4 (a),(b) and Figure 4 (c),(d)). However, average precision@N plots
(with augmented seeds) show steeper downhill slopes leading to slightly poorer
performance towards the end of the crawls for all but the Breadth-First crawler
(Figure 4 (c)). The benefit of augmented seeds is more prominent when we look
at average target recall@N plots (cf. Figure 4 (b) and (d)). We perform one-
tailed t-tests to check the hypothesis that the availability of augmented seeds
(that include hubs) significantly improves the performance of the crawlers based
on average target recall@10000. We find that for all the crawlers the null hy-

4 http://www.google.com/apis/

pothesis (no difference with augmented seeds) can be rejected in favor of the al-
ternative hypothesis (performance improves with augmented seeds) at α = 0.015
(in most cases even lower) significance level. We conclude that there is strong
evidence that the availability of “good” hubs during the crawl does improve the
performance of the crawlers. By providing the hubs, the search engine assists
the crawlers in making a good start that affects their overall performance.

7 Related Work

Various facets of Web crawlers have been studied in depth for nearly a decade
(e.g.,[6, 7, 3, 10]). Chakrabarti et al. [3] used a distiller within their crawler that
identified good hubs using a modified version of Kleinberg’s algorithm [8]. As
noted earlier we use a much simpler approach to identify potential hubs. More-
over, the authors did not show any strong evidence of the benefit of using hubs
during the crawl. In a more recent work Chakrabarti et al. [2] used the DOM
structure of a Web page in a focused crawler. However, their use of DOM trees is
different from the present idea of using the aggregation node to associate a link
to a context. In particular, their method uses the DOM tree in a manner similar
to the idea of using text tokens in the “vicinity” of a link to derive the context.
In contrast, the aggregation node explicitly captures the tag tree hierarchy by
grouping text tokens based on a common ancestor.

Measuring the performance of a crawler is a challenging problem due to the
non-availability of relevant sets on the Web. Nevertheless, researchers use various
metrics to understand the performance of topical crawlers (e.g.,[5, 3, 11]). A study
by Menczer et al. [11] on the evaluation of topical crawlers looks at a number
of ways to compare different crawlers. A more general framework to evaluate
topical crawlers is presented by Srinivasan et al. [18].

8 Conclusions

We investigated the problem of creating a small but effective collection of Web
documents for the purpose of locating related business entities by evaluating four
different crawlers. We found that the Hub-Seeking crawler that identifies poten-
tial hubs and exploits the intra-document structure significantly outperforms the
Naive Best-First crawler based on estimated recall. The Hub-Seeking crawler also
maintains a better estimated precision than the Naive Best-First crawler. Since
Web pages of similar business entities are expected to form a competitive Web
community, recognizing neutral hubs that link to many of the competing entities
is important. We do see a positive effect in performance through identification
of hubs both at the start of the crawl and during the crawl process.

In the future we would like to explore the performance of the Hub-Seeking
crawler on more general crawling problems. As noted earlier, the issue of finding
the optimal aggregation node is being investigated [13].

Acknowledgments

Thanks to Robin McEntire, Valdis A. Dzelzkalns, and Paul Stead at Glaxo-
SmithKline for their valuable suggestions. This work has been supported in part
through a summer internship by GlaxoSmithKline R&D to GP, and by the NSF
under CAREER grant No. IIS-0133124 to FM.

References

1. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Ra-
jagopalan. Automatic resource list compilation by analyzing hyperlink structure
and associated text. In WWW7, 1998.

2. S. Chakrabarti, K. Punera, and M. Subramanyam. Accelerated focused crawling
through online relevance feedback. In WWW2002, Hawaii, May 2002.

3. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach
to topic-specific Web resource discovery. In WWW8, May 1999.

4. J. Cho and H. Garcia-Molina. The evolution of the web and implications for an
incremental crawler. In VLDB 2000, Cairo, Egypt.

5. J. Cho, H. Garcia-Molina, and L. Page. Efficient crawling through URL ordering.
Computer Networks, 30(1–7):161–172, 1998.

6. P. M. E. De Bra and R. D. J. Post. Information retrieval in the World Wide Web:
Making client-based searching feasible. In Proc. 1st International World Wide Web
Conference, 1994.

7. M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and S. Ur. The
shark-search algorithm — An application: Tailored Web site mapping. In WWW7,
1998.

8. J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632, 1999.

9. S. Lawrence and C.L. Giles. Accessibility of information on the Web. Nature,
400:107–109, 1999.

10. F. Menczer and R. K. Belew. Adaptive retrieval agents: Internalizing local context
and scaling up to the Web. Machine Learning, 39(2–3):203–242, 2000.

11. F. Menczer, G. Pant, M. Ruiz, and P. Srinivasan. Evaluating topic-driven Web
crawlers. In Proc. 24th Annual Intl. ACM SIGIR Conf. on Research and Develop-
ment in Information Retrieval, 2001.

12. F. Menczer, G. Pant, and P. Srinivasan. Topical web crawlers: Evaluating adap-
tive algorithms. To appear in ACM Trans. on Internet Technologies, 2003.
http://dollar.biz.uiowa.edu/˜fil/Papers/TOIT.pdf.

13. G. Pant. Deriving Link-context from HTML Tag Tree. In 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, 2003.

14. G. Pant, P. Srinivasan, and F. Menczer. Exploration versus exploitation in topic
driven crawlers. In WWW02 Workshop on Web Dynamics, 2002.

15. M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
16. S. RaviKumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and

E. Upfal. Stochastic models for the Web graph. In FOCS, pages 57–65, Nov. 2000.
17. G. Salton and M.J. McGill. Introduction to Modern Information Retrieval.

McGraw-Hill, 1983.
18. P. Srinivasan, F. Menczer, and G. Pant. A general evaluation frame-

work for topical crawlers. Information Retrieval, Submitted, 2003.
http://dollar.biz.uiowa.edu/˜fil/Papers/crawl framework.pdf.

